Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Antimony(III) Dithiocarbamates: Synthesis, Spectral, Theoretical and Biological Activities
Corresponding Author(s) : S. Tamilvanan
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
Antimony(III) dithiocarbamate complexes tris(N,N-difurfuryldithiocarbamato-S,S′)antimony(III) (1) and tris(N-furfuryl-N-(2-phenylethyl)dithiocarbamato-S,S′)antimony(III) (2) have been synthesized and characterized by CHN analysis, FT-IR, 1H NMR, 13C NMR spectra and antimicrobial studies. The characteristic thioureide ν(C-N) bands occur at 1459 and 1469 cm-1 for complexes 1 and 2, respectively. 1H NMR and 13C NMR chemical shifts have been calculated using GIAO approach and the calculated chemical shifts shows good agreement with experiential shifts. The computational calculations of the antimony(III) complexes have been carried out by DFT/B3LYP using LANL2DZ basis set. The FMOs, MEP, Mulliken charge distribution and chemical activity parameters were calculated at the same level of theory. The antimicrobial activities of the antimony(III) complexes were assayed at the concentrations 400 and 800 μg/mL against four bacterial (Vibrio cholera, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli) and two fungal species (Candida albicans and Aspergillus niger) by Agar-well disc diffusion method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Hogarth, Mini Rev. Med. Chem., 12, 1202 (2012); https://doi.org/10.2174/138955712802762095
- L.A. Ramos and E.T.G. Cavalheiro, Braz. J. Therm. Anal., 2, 38 (2013); https://doi.org/10.18362/bjta.v2i1.11
- A. Ramos-Espinosa, H. Valdes, M. Teresa Ramirez-Apan, S. HernándezOrtega, B. Adriana Aguilar Castillo, R. Reyes-Martínez, J. Manuel Germán-Acacio and D. Morales-Morales, Inorg. Chim. Acta, 466, 584 (2017); https://doi.org/10.1016/j.ica.2017.07.035
- A. Jayaraju, K. Rameshbabu and J. Sreeramulu, Int. J. Pharm. Pharm. Sci., 4, 241 (2015).
- X. Hou, X. Li, H. Hemit and H.A. Aisa, J. Coord. Chem., 67, 461 (2014); https://doi.org/10.1080/00958972.2014.890717
- F. Shaheen, A. Badshah, M. Gielen, M. Dusek, K. Fejfarova, D. de Vos and B. Mirza, J. Organomet. Chem., 692, 3019 (2007); https://doi.org/10.1016/j.jorganchem.2007.03.019
- O. Guzel and A. Salman, Bioorg. Med. Chem., 14, 7804 (2006); https://doi.org/10.1016/j.bmc.2006.07.065
- F.F. Bobinihi, D.C. Onwudiwe, A.C. Ekennia, O.C. Okpareke, C. Arderne and J.R. Lane, Polyhedron, 158, 296 (2019); https://doi.org/10.1016/j.poly.2018.10.07
- T. Zitouni, G. Ozkay, Y. Ozdemir, A. Asim, K. Zafer and D.A. Mehlika, Lett. Drug Des. Discov., 8, 830 (2011); https://doi.org/10.2174/157018011797200786
- A. Golcu, Transition Met. Chem., 31, 405 (2006); https://doi.org/10.1007/s11243-006-0009-1
- S. Khan, S.A.A. Nami and K.S. Siddiqi, J. Organomet. Chem., 693, 1049 (2008); https://doi.org/10.1016/j.jorganchem.2007.12.026
- S. Nagata, X. Zhou and H. Okamura, Antagonistic and Synergistic Effects of Antifouling Chemicals in Mixture; In: Encyclopedia of Ecology, FiveVolume Set; Elsevier: Amsterdam, The Netherlands, pp. 194-203 (2008).
- A. Warshawsky, I. Rogachev, Y. Patil, A. Baszkin, L. Weiner and J. Gressel, Langmuir, 17, 5621 (2001); https://doi.org/10.1021/la010299e
- R. Ghorbani-Vaghei, M. Amiri and H. Veisi, Bull. Korean Chem. Soc., 33, 4047 (2012); https://doi.org/10.5012/bkcs.2012.33.12.4047
- . R.M. Desai, D.K. Dodiya, A.R. Trivedi and V.H. Shah, Med. Chem. Res., 17, 495 (2008); https://doi.org/10.1007/s00044-008-9093-4
- C.J. Van Leeuwen, J.L. Maas-Diepeveen, G. Niebeek, W.H.A. Vergouw, P.S. Griffioen and M.W. Luijken, Aquat. Toxicol., 7, 145 (1985); https://doi.org/10.1016/S0166-445X(85)80002-3
- S.R. Thomas, H. Salahifar, R. Mashima, N.H. Hunt, D.R. Richardson and R. Stocker, J. Immunol., 166, 6332 (2001); https://doi.org/10.4049/jimmunol.166.10.6332
- F. Ozkanli, A.G. Usanmaz, K. Ozadali, E. Yildirim and K. Erol, J. Pharm. Sci., 35, 19 (2010).
- S.J. Hosseinimehr, D. Beiki, A. Kebriaeezadeh, A. Khalaj, M.P. Hamedani, S. Akhlaghpoor, H. Esmaeili and A.R. Barazesh, Iran. J. Radiat. Res., 7, 91 (2009).
- S.T. Byrne, P. Gu, J. Zhou, S.M. Denkin, C. Chong, D. Sullivan, J.O. Liu and Y. Zhang, Antimicrob. Agents Chemother., 51, 4495 (2007); https://doi.org/10.1128/AAC.00753-07
- F.U. Shah, S. Glavatskih and O.N. Antzutkin, Tribol. Lett., 45, 67 (2012); https://doi.org/10.1007/s11249-011-9855-x
- R. Sarin, A.K. Gupta, D. Tuli, A.S. Verma, M.M. Rai and A.K. Bhatnagar, Tribol. Int., 26, 389 (1993); https://doi.org/10.1016/0301-679X(93)90077-E
- J.O. Adeyemi and D.C. Onwudiwe, Molecules, 23, 2571 (2018); https://doi.org/10.3390/molecules23102571
- P.J. Rani and S. Thirumaran, Eur. J. Med. Chem., 62, 139 (2013); https://doi.org/10.1016/j.ejmech.2012.12.047
- J.O. Adeyemi and D.C. Onwudiwe, Molecules, 25, 305 (2020); https://doi.org/10.3390/molecules25020305
- M.A. Mumit, T.K. Pal, M.A. Alam, M.A. Islam, S. Paul and M.C. Sheikh, J. Mol. Struct., 1220, 128715 (2020); https://doi.org/10.1016/j.molstruc.2020.128715
- R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
- K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
- H. Chermette, J. Comput. Chem., 20, 129 (1999); https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
- K. Ramirez-Balderrama, E. Orrantia-Borunda and N. Flores-Holguin, J. Theor. Comput. Chem., 16, 1750019 (2017); https://doi.org/10.1142/S0219633617500195
- A. Zainuri, S. Arshad, N.C. Khalib and I.A. Razak, Mol. Cryst. Liq. Cryst., 650, 87 (2017); https://doi.org/10.1080/15421406.2017.1328222
- K. Chaturvedi, A. Kumar and A. Mishra, Der Pharma Chem., 6, 27 (2014).
- F. Bonati and R. Ugo, J. Organomet. Chem., 10, 257 (1967); https://doi.org/10.1016/S0022-328X(00)93085-7
- A.W. Herlinger, S.L. Wenhold and T.V. Long II, J. Am. Chem. Soc., 92, 6474 (1970); https://doi.org/10.1021/ja00725a015
- H.L.M. Van Gaal, J.W. Diesveld, F.W. Pijpers and J.G.M. Van der Linden, Inorg. Chem., 18, 3251 (1979); https://doi.org/10.1021/ic50201a062
- R.V. Solomon, P. Veerapandian, S.A. Vedha and P. Venuvanalingam, J. Phys. Chem. A, 116, 4667 (2012); https://doi.org/10.1021/jp302276w
- A. Prasad, S.K. Kalainathan and S.P. Meenakshisundaram, Optik, 127, 6134 (2016); https://doi.org/10.1016/j.ijleo.2016.04.060
- T.A. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2
- R.S. Mulliken, J. Chem. Phys., 2, 782 (1934); https://doi.org/10.1063/1.1749394
- R.G. Parr, L. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
- A. Kumar, R. Kumar, A. Gupta, P. Tandon and E.D. D’silva, J. Mol. Struct., 1150, 166 (2017); https://doi.org/10.1016/j.molstruc.2017.08.072
- R.K. Singh, S.K. Verma and P.D. Sharma, Int. J. Chemtech Res., 3, 1571 (2011).
- I. Rajaei and S.N. Mirsattari, J. Mol. Struct., 1163, 236 (2018); https://doi.org/10.1016/j.molstruc.2018.02.010
- H.P.S. Chauhan and U.P. Singh, Appl. Organomet. Chem., 21, 880 (2007); https://doi.org/10.1002/aoc.1290
References
G. Hogarth, Mini Rev. Med. Chem., 12, 1202 (2012); https://doi.org/10.2174/138955712802762095
L.A. Ramos and E.T.G. Cavalheiro, Braz. J. Therm. Anal., 2, 38 (2013); https://doi.org/10.18362/bjta.v2i1.11
A. Ramos-Espinosa, H. Valdes, M. Teresa Ramirez-Apan, S. HernándezOrtega, B. Adriana Aguilar Castillo, R. Reyes-Martínez, J. Manuel Germán-Acacio and D. Morales-Morales, Inorg. Chim. Acta, 466, 584 (2017); https://doi.org/10.1016/j.ica.2017.07.035
A. Jayaraju, K. Rameshbabu and J. Sreeramulu, Int. J. Pharm. Pharm. Sci., 4, 241 (2015).
X. Hou, X. Li, H. Hemit and H.A. Aisa, J. Coord. Chem., 67, 461 (2014); https://doi.org/10.1080/00958972.2014.890717
F. Shaheen, A. Badshah, M. Gielen, M. Dusek, K. Fejfarova, D. de Vos and B. Mirza, J. Organomet. Chem., 692, 3019 (2007); https://doi.org/10.1016/j.jorganchem.2007.03.019
O. Guzel and A. Salman, Bioorg. Med. Chem., 14, 7804 (2006); https://doi.org/10.1016/j.bmc.2006.07.065
F.F. Bobinihi, D.C. Onwudiwe, A.C. Ekennia, O.C. Okpareke, C. Arderne and J.R. Lane, Polyhedron, 158, 296 (2019); https://doi.org/10.1016/j.poly.2018.10.07
T. Zitouni, G. Ozkay, Y. Ozdemir, A. Asim, K. Zafer and D.A. Mehlika, Lett. Drug Des. Discov., 8, 830 (2011); https://doi.org/10.2174/157018011797200786
A. Golcu, Transition Met. Chem., 31, 405 (2006); https://doi.org/10.1007/s11243-006-0009-1
S. Khan, S.A.A. Nami and K.S. Siddiqi, J. Organomet. Chem., 693, 1049 (2008); https://doi.org/10.1016/j.jorganchem.2007.12.026
S. Nagata, X. Zhou and H. Okamura, Antagonistic and Synergistic Effects of Antifouling Chemicals in Mixture; In: Encyclopedia of Ecology, FiveVolume Set; Elsevier: Amsterdam, The Netherlands, pp. 194-203 (2008).
A. Warshawsky, I. Rogachev, Y. Patil, A. Baszkin, L. Weiner and J. Gressel, Langmuir, 17, 5621 (2001); https://doi.org/10.1021/la010299e
R. Ghorbani-Vaghei, M. Amiri and H. Veisi, Bull. Korean Chem. Soc., 33, 4047 (2012); https://doi.org/10.5012/bkcs.2012.33.12.4047
. R.M. Desai, D.K. Dodiya, A.R. Trivedi and V.H. Shah, Med. Chem. Res., 17, 495 (2008); https://doi.org/10.1007/s00044-008-9093-4
C.J. Van Leeuwen, J.L. Maas-Diepeveen, G. Niebeek, W.H.A. Vergouw, P.S. Griffioen and M.W. Luijken, Aquat. Toxicol., 7, 145 (1985); https://doi.org/10.1016/S0166-445X(85)80002-3
S.R. Thomas, H. Salahifar, R. Mashima, N.H. Hunt, D.R. Richardson and R. Stocker, J. Immunol., 166, 6332 (2001); https://doi.org/10.4049/jimmunol.166.10.6332
F. Ozkanli, A.G. Usanmaz, K. Ozadali, E. Yildirim and K. Erol, J. Pharm. Sci., 35, 19 (2010).
S.J. Hosseinimehr, D. Beiki, A. Kebriaeezadeh, A. Khalaj, M.P. Hamedani, S. Akhlaghpoor, H. Esmaeili and A.R. Barazesh, Iran. J. Radiat. Res., 7, 91 (2009).
S.T. Byrne, P. Gu, J. Zhou, S.M. Denkin, C. Chong, D. Sullivan, J.O. Liu and Y. Zhang, Antimicrob. Agents Chemother., 51, 4495 (2007); https://doi.org/10.1128/AAC.00753-07
F.U. Shah, S. Glavatskih and O.N. Antzutkin, Tribol. Lett., 45, 67 (2012); https://doi.org/10.1007/s11249-011-9855-x
R. Sarin, A.K. Gupta, D. Tuli, A.S. Verma, M.M. Rai and A.K. Bhatnagar, Tribol. Int., 26, 389 (1993); https://doi.org/10.1016/0301-679X(93)90077-E
J.O. Adeyemi and D.C. Onwudiwe, Molecules, 23, 2571 (2018); https://doi.org/10.3390/molecules23102571
P.J. Rani and S. Thirumaran, Eur. J. Med. Chem., 62, 139 (2013); https://doi.org/10.1016/j.ejmech.2012.12.047
J.O. Adeyemi and D.C. Onwudiwe, Molecules, 25, 305 (2020); https://doi.org/10.3390/molecules25020305
M.A. Mumit, T.K. Pal, M.A. Alam, M.A. Islam, S. Paul and M.C. Sheikh, J. Mol. Struct., 1220, 128715 (2020); https://doi.org/10.1016/j.molstruc.2020.128715
R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
H. Chermette, J. Comput. Chem., 20, 129 (1999); https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
K. Ramirez-Balderrama, E. Orrantia-Borunda and N. Flores-Holguin, J. Theor. Comput. Chem., 16, 1750019 (2017); https://doi.org/10.1142/S0219633617500195
A. Zainuri, S. Arshad, N.C. Khalib and I.A. Razak, Mol. Cryst. Liq. Cryst., 650, 87 (2017); https://doi.org/10.1080/15421406.2017.1328222
K. Chaturvedi, A. Kumar and A. Mishra, Der Pharma Chem., 6, 27 (2014).
F. Bonati and R. Ugo, J. Organomet. Chem., 10, 257 (1967); https://doi.org/10.1016/S0022-328X(00)93085-7
A.W. Herlinger, S.L. Wenhold and T.V. Long II, J. Am. Chem. Soc., 92, 6474 (1970); https://doi.org/10.1021/ja00725a015
H.L.M. Van Gaal, J.W. Diesveld, F.W. Pijpers and J.G.M. Van der Linden, Inorg. Chem., 18, 3251 (1979); https://doi.org/10.1021/ic50201a062
R.V. Solomon, P. Veerapandian, S.A. Vedha and P. Venuvanalingam, J. Phys. Chem. A, 116, 4667 (2012); https://doi.org/10.1021/jp302276w
A. Prasad, S.K. Kalainathan and S.P. Meenakshisundaram, Optik, 127, 6134 (2016); https://doi.org/10.1016/j.ijleo.2016.04.060
T.A. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2
R.S. Mulliken, J. Chem. Phys., 2, 782 (1934); https://doi.org/10.1063/1.1749394
R.G. Parr, L. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
A. Kumar, R. Kumar, A. Gupta, P. Tandon and E.D. D’silva, J. Mol. Struct., 1150, 166 (2017); https://doi.org/10.1016/j.molstruc.2017.08.072
R.K. Singh, S.K. Verma and P.D. Sharma, Int. J. Chemtech Res., 3, 1571 (2011).
I. Rajaei and S.N. Mirsattari, J. Mol. Struct., 1163, 236 (2018); https://doi.org/10.1016/j.molstruc.2018.02.010
H.P.S. Chauhan and U.P. Singh, Appl. Organomet. Chem., 21, 880 (2007); https://doi.org/10.1002/aoc.1290