Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optical and Magnetic Characteristics of LaFeO3 Nanoparticles Synthesized by Simple Co-Precipitation Method using Ethanol
Corresponding Author(s) : Bui Xuan Vuong
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
Present study describes the synthesis of nanocrystalline lanthanum orthoferrite by co-precipitation method using ethanol as a solvent. LaFeO3 nanopowders formed after annealing the precursor at temperatures of 700, 800 and 900 ºC for 1 h, have a particle size in the range of 30-50 nm. According to XRD analysis, an increase in the annealing temperature from 700 to 900 ºC leads to an increase in the average crystallite size from 43.76 to 62.80 nm and a decrease in the unit cell volume of about 241.90 to 240.66 Å3. Synthesized LaFeO3 nanoparticles have strong absorption in ultraviolet (~ 200-400 nm) and visible light (~ 400-600 nm) and are soft magnetic materials with high magnetization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- U. Oemar, P. Ang, K. Hidajat and S. Kawi, Int. J. Hydrogen Energy, 38, 5525 (2013); https://doi.org/10.1016/j.ijhydene.2013.02.083
- J.W. Fergus, Sens. Actuators B Chem., 123, 1169 (2007); https://doi.org/10.1016/j.snb.2006.10.051
- M.V. Knurova, I.Ya. Mittova, N.S. Perov, O.V. Al’myasheva, N.A. Tien, V.O. Mittova, V.V. Bessalova and E.L. Viryutina, Russ. J. Inorg. Chem., 62, 281 (2017); https://doi.org/10.1134/S0036023617030081
- C. Sasikala, N. Durairaj, I. Baskaran, B. Sathyaseelan, M. Henini and E. Manikandan, J. Alloys Compd., 712, 870 (2017); https://doi.org/10.1016/j.jallcom.2017.04.133
- A.T. Nguyen, V.N.T. Pham, H.T. Le, D.H. Chau, V.O. Mittova, L.T.T. Nguyen, D.A. Dinh, T.V. Nhan Hao and I.Y. Mittova, Ceram. Int., 45, 21768 (2019); https://doi.org/10.1016/j.ceramint.2019.07.178
- N.F. Atta, A. Galal and E.H. El-Ads, Eds.: L. Pan and G. Zhu, Perovskite Nanomaterials: Synthesis, Characterization and Applications, InTechOpen: London, Ed.: 1, Chap. 4, pp. 107-151 (2016)
- L. Zhang, X. Zhang, G. Tian, Q. Zhang, M. Knapp, H. Ehrenberg, G. Chen, Z. Shen, G. Yang, L. Gu and F. Du, Nat. Commun., 11, 3490 (2020); https://doi.org/10.1038/s41467-020-17233-1
- N.A. Tien, I.Y. Mittova, D.O. Solodukhin, O.V. Al’myasheva, V.O. Mittova and S.Y. Demidova, Russ. J. Inorg. Chem., 59, 40 (2014); https://doi.org/10.1134/S0036023614020156
- M.V. Berezhnaya, O.V. Al’myasheva, V.O. Mittova, A.T. Nguen and I.Y. Mittova, Russ. J. Gen. Chem., 88, 626 (2018); https://doi.org/10.1134/S1070363218040035
- V.I. Popkov, E.A. Tugova, A.K. Bachina and O.V. Almyasheva, Russ. J. Gen. Chem., 87, 2516 (2017); https://doi.org/10.1134/S1070363217110020
- V. Berbenni, G. Bruni, C. Milanese, A. Girella and A. Marini, J. Therm. Anal. Calorim., 133, 413 (2018); https://doi.org/10.1007/s10973-017-6878-z
- ZhQ. Wang, Y.Sh. Lan, Z.-Y. Zeng, X.-R. Chen and Q.-F. Chen, Solid State Commun., 288, 10 (2019); https://doi.org/10.1016/j.ssc.2018.11.004
- Zh. Zhou, L. Guo, H. Yang, Q. Liu and F. Ye, J. Alloys Comp., 583, 21 (2014); https://doi.org/10.1016/j.jallcom.2013.08.129
- A.T. Nguyen, V. Pham, T.L. Pham, L.T.T. Nguyen, I.Y. Mittova, V.O. Mittova, L.N. Vo, B.T.T. Nguyen, V.X. Bui and E.L. Viryutina, Crystals, 10, 219 (2020); https://doi.org/10.3390/cryst10030219
- A.T. Nguyen, V. Pham, T.T.L. Nguyen, V.O. Mittova, Q.M. Vo, M.V. Berezhnaya, I.Y. Mittova, T.H. Do and H.D. Chau, Solid State Sci., 96, 105922 (2019); https://doi.org/10.1016/j.solidstatesciences.2019.06.011
- S.N. Tijare, M.V. Joshi, P.S. Padole, P.A. Mangrulkar, S.S. Rayalu and N.K. Labhsetwar, Int. J. Hydrogen Energy, 37, 10451 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.120
- T. Liu and Y. Xu, Mater. Chem. Phys., 129, 1047 (2011); https://doi.org/10.1016/j.matchemphys.2011.05.054
- K. Parida, K.H. Reddy, S. Martha, D.P. Das and N. Biswal, Int. J. Hydrogen Energy, 35, 12161 (2010); https://doi.org/10.1016/j.ijhydene.2010.08.029
- M. Popa, J. Frantti and M. Kakihana, Solid State Ion., 154-155, 437 (2002); https://doi.org/10.1016/S0167-2738(02)00480-0
- S. Phokha, S. Pinitsoontorn, S. Maensiri and S. Rujirawat, J. Sol-Gel Sci. Technol., 71, 333 (2014); https://doi.org/10.1007/s10971-014-3383-8
- A.T. Nguyen, T.T.L. Nguyen, V.X. Bui, D.H.T. Nguyen, H.D. Lieu, L.M.T. Le and V. Pham, J. Alloys Compd., 834, 155098 (2020); https://doi.org/10.1016/j.jallcom.2020.155098
- C.E. Housecroft and A.G. Sharpe, Inorganic Chemistry, Pearson: Prentice Hall, Ed.: 2 (2005).
- D. Klein, Organic Chemistry, Wiley, Ed.: 2, Chap. 13 (2016).
- M. Abdellahi, A.S. Abhari and M. Bahmanpour, Ceram. Int., 42, 4637 (2016); https://doi.org/10.1016/j.ceramint.2015.12.027
- A.T. Nguyen, N.T. Nguyen, I. Mittova, N. Perov, V. Mittova, T. Hoang, V. Nguyen, V. Nguyen, V. Pham and X. Bui, Process. Appl. Ceram., 14, 355 (2020); https://doi.org/10.2298/PAC2004355N
- N. Ghobadi, Int. Nano Lett., 3, 2 (2013); https://doi.org/10.1186/2228-5326-3-2
- X.V. Bui and A.T. Nguyen, Conden. Matt. Interphases, 23, 196 (2021); https://doi.org/10.17308/kcmf.2021.23/3429
References
U. Oemar, P. Ang, K. Hidajat and S. Kawi, Int. J. Hydrogen Energy, 38, 5525 (2013); https://doi.org/10.1016/j.ijhydene.2013.02.083
J.W. Fergus, Sens. Actuators B Chem., 123, 1169 (2007); https://doi.org/10.1016/j.snb.2006.10.051
M.V. Knurova, I.Ya. Mittova, N.S. Perov, O.V. Al’myasheva, N.A. Tien, V.O. Mittova, V.V. Bessalova and E.L. Viryutina, Russ. J. Inorg. Chem., 62, 281 (2017); https://doi.org/10.1134/S0036023617030081
C. Sasikala, N. Durairaj, I. Baskaran, B. Sathyaseelan, M. Henini and E. Manikandan, J. Alloys Compd., 712, 870 (2017); https://doi.org/10.1016/j.jallcom.2017.04.133
A.T. Nguyen, V.N.T. Pham, H.T. Le, D.H. Chau, V.O. Mittova, L.T.T. Nguyen, D.A. Dinh, T.V. Nhan Hao and I.Y. Mittova, Ceram. Int., 45, 21768 (2019); https://doi.org/10.1016/j.ceramint.2019.07.178
N.F. Atta, A. Galal and E.H. El-Ads, Eds.: L. Pan and G. Zhu, Perovskite Nanomaterials: Synthesis, Characterization and Applications, InTechOpen: London, Ed.: 1, Chap. 4, pp. 107-151 (2016)
L. Zhang, X. Zhang, G. Tian, Q. Zhang, M. Knapp, H. Ehrenberg, G. Chen, Z. Shen, G. Yang, L. Gu and F. Du, Nat. Commun., 11, 3490 (2020); https://doi.org/10.1038/s41467-020-17233-1
N.A. Tien, I.Y. Mittova, D.O. Solodukhin, O.V. Al’myasheva, V.O. Mittova and S.Y. Demidova, Russ. J. Inorg. Chem., 59, 40 (2014); https://doi.org/10.1134/S0036023614020156
M.V. Berezhnaya, O.V. Al’myasheva, V.O. Mittova, A.T. Nguen and I.Y. Mittova, Russ. J. Gen. Chem., 88, 626 (2018); https://doi.org/10.1134/S1070363218040035
V.I. Popkov, E.A. Tugova, A.K. Bachina and O.V. Almyasheva, Russ. J. Gen. Chem., 87, 2516 (2017); https://doi.org/10.1134/S1070363217110020
V. Berbenni, G. Bruni, C. Milanese, A. Girella and A. Marini, J. Therm. Anal. Calorim., 133, 413 (2018); https://doi.org/10.1007/s10973-017-6878-z
ZhQ. Wang, Y.Sh. Lan, Z.-Y. Zeng, X.-R. Chen and Q.-F. Chen, Solid State Commun., 288, 10 (2019); https://doi.org/10.1016/j.ssc.2018.11.004
Zh. Zhou, L. Guo, H. Yang, Q. Liu and F. Ye, J. Alloys Comp., 583, 21 (2014); https://doi.org/10.1016/j.jallcom.2013.08.129
A.T. Nguyen, V. Pham, T.L. Pham, L.T.T. Nguyen, I.Y. Mittova, V.O. Mittova, L.N. Vo, B.T.T. Nguyen, V.X. Bui and E.L. Viryutina, Crystals, 10, 219 (2020); https://doi.org/10.3390/cryst10030219
A.T. Nguyen, V. Pham, T.T.L. Nguyen, V.O. Mittova, Q.M. Vo, M.V. Berezhnaya, I.Y. Mittova, T.H. Do and H.D. Chau, Solid State Sci., 96, 105922 (2019); https://doi.org/10.1016/j.solidstatesciences.2019.06.011
S.N. Tijare, M.V. Joshi, P.S. Padole, P.A. Mangrulkar, S.S. Rayalu and N.K. Labhsetwar, Int. J. Hydrogen Energy, 37, 10451 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.120
T. Liu and Y. Xu, Mater. Chem. Phys., 129, 1047 (2011); https://doi.org/10.1016/j.matchemphys.2011.05.054
K. Parida, K.H. Reddy, S. Martha, D.P. Das and N. Biswal, Int. J. Hydrogen Energy, 35, 12161 (2010); https://doi.org/10.1016/j.ijhydene.2010.08.029
M. Popa, J. Frantti and M. Kakihana, Solid State Ion., 154-155, 437 (2002); https://doi.org/10.1016/S0167-2738(02)00480-0
S. Phokha, S. Pinitsoontorn, S. Maensiri and S. Rujirawat, J. Sol-Gel Sci. Technol., 71, 333 (2014); https://doi.org/10.1007/s10971-014-3383-8
A.T. Nguyen, T.T.L. Nguyen, V.X. Bui, D.H.T. Nguyen, H.D. Lieu, L.M.T. Le and V. Pham, J. Alloys Compd., 834, 155098 (2020); https://doi.org/10.1016/j.jallcom.2020.155098
C.E. Housecroft and A.G. Sharpe, Inorganic Chemistry, Pearson: Prentice Hall, Ed.: 2 (2005).
D. Klein, Organic Chemistry, Wiley, Ed.: 2, Chap. 13 (2016).
M. Abdellahi, A.S. Abhari and M. Bahmanpour, Ceram. Int., 42, 4637 (2016); https://doi.org/10.1016/j.ceramint.2015.12.027
A.T. Nguyen, N.T. Nguyen, I. Mittova, N. Perov, V. Mittova, T. Hoang, V. Nguyen, V. Nguyen, V. Pham and X. Bui, Process. Appl. Ceram., 14, 355 (2020); https://doi.org/10.2298/PAC2004355N
N. Ghobadi, Int. Nano Lett., 3, 2 (2013); https://doi.org/10.1186/2228-5326-3-2
X.V. Bui and A.T. Nguyen, Conden. Matt. Interphases, 23, 196 (2021); https://doi.org/10.17308/kcmf.2021.23/3429