Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Decomposition of Hydrogen Peroxide using Chemical and Catalytic Methods: A Reactor-based Approach
Corresponding Author(s) : Mohammad A. Hasnat
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
A feasible catalytic reactor for oxygen evolution has been proposed, which could complement the current methods of O2 evolution efficiently and ensure the availability of pure oxygen on a wider scale. Several chemicals, such as NaI, MnO2, NiSO4, etc. can generally decompose hydrogen peroxide by producing oxygen as a product via chemical reactions. Meanwhile, the Pt-Pd catalyst efficiently catalyzes hydrogen peroxide decomposition reactions and generates pure oxygen without any unfriendly species. The excellence of the bi-metallic catalyst has been validated by the evaluation of turnover number (TON) and turnover frequency (TOF). Implementing the knowledge of chemical reactions and heterogenous catalysis, the proposed catalytic reactor could be helpful for generating a continuous flow of oxygen. Surely, the oxygen produced in this process is higher in amount compared to the oxygen present in the atmosphere at ambient conditions which might facilitate the breathing support for critically ill patients.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Saha, M.M. Ahsan, T.U. Quader, M.U.S. Shohan, S. Naher, P. Dutta, A.S. Akash, H.M.H. Mehedi, A.A.U. Chowdhury, H. Karim, T. Rahman and A. Parvin, J. Prev. Med. Hyg., 62, E33 (2021); https://doi.org/10.15167/2421-4248/jpmh2021.62.1.1838
- K.R. Ward, G.S. Huvard, M. McHugh, R.R. Mallepally and R. Imbruce, Resp. Care, 58, 184 (2013); https://doi.org/10.4187/respcare.01983
- W.J.B. Chater, Chem. Eng. Sci., 3, 118 (1954); https://doi.org/10.1016/S0009-2509(54)80011-X
- D. Gust, T.A. Moore and A.L. Moore, Faraday Discuss., 155, 9 (2012); https://doi.org/10.1039/C1FD00110H
- B. Ha, Cryogenic Distillation Process for the Production of Oxygen and Nitrogen, US Patent US 5231837A (1993).
- T.W.K. Lew, T.K. Kwek, D. Tai, A. Earnest, S. Loo, K. Singh, K.M. Kwan, Y. Chan, C.F. Yim, S.L. Bek, A.C. Kor, W.S. Yap, Y.R. Chelliah, Y.C. Lai and S.-K. Goh, JAMA, 290, 374 (2003); https://doi.org/10.1001/jama.290.3.374
- H.M. Reza, F. Sultana and I.O. Khan, Open Public Health J., 13, 438 (2020); https://doi.org/10.2174/1874944502013010438
- N. Sakib, T. Akter, F. Zohra, A.K.M.I. Bhuiyan, M.A. Mamun and M.D. Griffiths, Int. J. Ment. Health Addiction,(2021); https://doi.org/10.1007/s11469-020-00477-9
- H.J. Zar, J. Dawa, G.B. Fischer and J.A. Castro-Rodriguez, Paediatr. Respir. Rev., 35, 70 (2020); https://doi.org/10.1016/j.prrv.2020.06.016
- V.K. Jain, K.P. Iyengar and R. Vaishya, Diabetes Metab. Syndr., 15, 1047 (2021); https://doi.org/10.1016/j.dsx.2021.05.009
- A. Haque, J. Heal Res., 34, 563 (2020); https://doi.org/10.1108/JHR-07-2020-0279
- A.A. Moona, S. Daria, M. Asaduzzaman and M.R. Islam, Infect. Prev. Pract., 3, 100159 (2021); https://doi.org/10.1016/j.infpip.2021.100159
- J.M. Aubry, J. Am. Chem. Soc., 107, 5844 (1985); https://doi.org/10.1021/ja00307a002
- S. Ranganathan and V. Sieber, Catalysts, 8, 379 (2018); https://doi.org/10.3390/catal8090379
- M.J. Liou and M.C. Lu, J. Hazard. Mater., 151, 540 (2008); https://doi.org/10.1016/j.jhazmat.2007.06.016
- Y. Voloshin, R. Halder and A. Lawal, Catal. Today, 125, 40 (2007); https://doi.org/10.1016/j.cattod.2007.01.043
- W. Chen, F. Chen, G. Zhang, S. Kong, W. Cai, J. Wang, L. Du and C. Wu, Mater. Lett., 239, 94 (2019); https://doi.org/10.1016/j.matlet.2018.12.064
- S.H. Lee, I.I. Nedrygailov, S. Oh and J.Y. Park, Catal. Today, 303, 282 (2018); https://doi.org/10.1016/j.cattod.2017.09.038
- G. Fang, Y. Deng, M. Huang, D.D. Dionysiou, C. Liu and D. Zhou, Environ. Sci. Technol., 52, 2178 (2018); https://doi.org/10.1021/acs.est.7b05303
- T. Kim, J.S. Hwang and S. Kwon, Lab Chip, 7, 835 (2007); https://doi.org/10.1039/b700040e
- M.A. Hasnat, M.M. Rahman, S.M. Borhanuddin, A. Siddiqua, N.M. Bahadur and M.R. Karim, Catal. Commun., 12, 286 (2010); https://doi.org/10.1016/j.catcom.2010.10.001
- L. Trotochaud and S.W. Boettcher, Scr. Mater., 74, 25 (2014); https://doi.org/10.1016/j.scriptamat.2013.07.019
- D.E. McCoy, T. Feo, T.A. Harvey and R.O. Prum, Nat. Commun., 9, 1 (2018); https://doi.org/10.1038/s41467-017-02088-w
- J.S. Kim, B. Kim, H. Kim and K. Kang, Adv. Energy Mater., 8, 1702774 (2018); https://doi.org/10.1002/aenm.201702774
- X. Xu, F. Song and X. Hu, Nat. Commun., 7, 12324 (2016); https://doi.org/10.1038/ncomms12324
- S.R. Ede and Z. Luo, J. Mater. Chem. A Mater. Energy Sustain., 9, 20131 (2021); https://doi.org/10.1039/D1TA04032D
- M.A. Hasnat, M.S. Alam, M.M. Karim, M.A. Rashed and M. Machida, Appl. Catal. B: Environ., 107, 294 (2011); https://doi.org/10.1016/j.apcatb.2011.07.028
- J.C. Hansen, J. Chem. Educ., 73, 728 (1996); https://doi.org/10.1021/ed073p728
- H.A. Liebhafsky and A. Mohammad, J. Am. Chem. Soc., 55, 3977 (1933); https://doi.org/10.1021/ja01337a010
- H.A. Liebhafsky, J. Am. Chem. Soc., 53, 896 (1931); https://doi.org/10.1021/ja01354a010
- D.B. Broughton, R.L. Wentworth and M.E. Laing, J. Am. Chem. Soc., 69, 744 (1947); https://doi.org/10.1021/ja01196a004
- D.B. Broughton and R.L. Wentworth, J. Am. Chem. Soc., 69, 741 (1947); https://doi.org/10.1021/ja01196a003
- J.J. Rusek, J. Propulsion Power, 12, 574 (2012); https://doi.org/10.2514/3.24071
- W. He, Y.T. Zhou, W.G. Wamer, X. Hu, X. Wu, Z. Zheng, M.D. Boudreau and J.-J. Yin, Biomaterials, 34, 765 (2013); https://doi.org/10.1016/j.biomaterials.2012.10.010
- M.A. Hasan, M.I. Zaki, L. Pasupulety and K. Kumari, Appl. Catal. A Gen., 181, 171 (1999); https://doi.org/10.1016/S0926-860X(98)00430-X
- R. Serra-Maia, M. Bellier, S. Chastka, K. Tranhuu, A. Subowo, J.D. Rimstidt, P.M. Usov, A.J. Morris and F.M. Michel, ACS Appl. Mater. Interfaces, 10, 21224 (2018); https://doi.org/10.1021/acsami.8b02345
- A. Thetford, G.J. Hutchings, S.H. Taylor and D.J. Willock, The Decomposition of H2O2 over the Components of Au/TiO2 Catalysts. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society Publishing, pp. 1885–1899 (2011.
- J. Hofmann, U. Freier, M. Wecks and S. Hohmann, Appl. Catal. B, 70, 447 (2007); https://doi.org/10.1016/j.apcatb.2005.11.023
- V. Polshettiwar and R.S. Varma, Org. Biomol. Chem., 7, 37 (2009); https://doi.org/10.1039/B817669H
- R. Serra-Maia, M. Bellier, S. Chastka, K. Tranhuu, A. Subowo, J.D. Rimstidt, P.M. Usov, A.J. Morris and F.M. Michel, ACS Appl. Mater. Interfaces, 10, 21224 (2018); https://doi.org/10.1021/acsami.8b02345
- M.A. Hasnat, M.M. Rahman, I.A. Siddiquey, S.M. Borhanuddin, M.S. Alam, M.H. Rahman and A.M. Asiri, RSC Adv., 5, 46295 (2015); https://doi.org/10.1039/C5RA05620A
- S.Q. Liu and H.X. Ju, Anal. Biochem., 307, 110 (2002); https://doi.org/10.1016/S0003-2697(02)00014-3
- D.R. Shobha Jeykumari, S. Ramaprabhu and S. Sriman Narayanan, Carbon, 45, 1340 (2007); https://doi.org/10.1016/j.carbon.2007.01.006
- M. Comotti, C. Della Pina, R. Matarrese and M. Rossi, Angew. Chem. Int. Ed., 43, 5812 (2004); https://doi.org/10.1002/anie.200460446
- S. Kozuch and J.M.L. Martin, ACS Catal., 2, 2787 (2012); https://doi.org/10.1021/cs3005264
References
A. Saha, M.M. Ahsan, T.U. Quader, M.U.S. Shohan, S. Naher, P. Dutta, A.S. Akash, H.M.H. Mehedi, A.A.U. Chowdhury, H. Karim, T. Rahman and A. Parvin, J. Prev. Med. Hyg., 62, E33 (2021); https://doi.org/10.15167/2421-4248/jpmh2021.62.1.1838
K.R. Ward, G.S. Huvard, M. McHugh, R.R. Mallepally and R. Imbruce, Resp. Care, 58, 184 (2013); https://doi.org/10.4187/respcare.01983
W.J.B. Chater, Chem. Eng. Sci., 3, 118 (1954); https://doi.org/10.1016/S0009-2509(54)80011-X
D. Gust, T.A. Moore and A.L. Moore, Faraday Discuss., 155, 9 (2012); https://doi.org/10.1039/C1FD00110H
B. Ha, Cryogenic Distillation Process for the Production of Oxygen and Nitrogen, US Patent US 5231837A (1993).
T.W.K. Lew, T.K. Kwek, D. Tai, A. Earnest, S. Loo, K. Singh, K.M. Kwan, Y. Chan, C.F. Yim, S.L. Bek, A.C. Kor, W.S. Yap, Y.R. Chelliah, Y.C. Lai and S.-K. Goh, JAMA, 290, 374 (2003); https://doi.org/10.1001/jama.290.3.374
H.M. Reza, F. Sultana and I.O. Khan, Open Public Health J., 13, 438 (2020); https://doi.org/10.2174/1874944502013010438
N. Sakib, T. Akter, F. Zohra, A.K.M.I. Bhuiyan, M.A. Mamun and M.D. Griffiths, Int. J. Ment. Health Addiction,(2021); https://doi.org/10.1007/s11469-020-00477-9
H.J. Zar, J. Dawa, G.B. Fischer and J.A. Castro-Rodriguez, Paediatr. Respir. Rev., 35, 70 (2020); https://doi.org/10.1016/j.prrv.2020.06.016
V.K. Jain, K.P. Iyengar and R. Vaishya, Diabetes Metab. Syndr., 15, 1047 (2021); https://doi.org/10.1016/j.dsx.2021.05.009
A. Haque, J. Heal Res., 34, 563 (2020); https://doi.org/10.1108/JHR-07-2020-0279
A.A. Moona, S. Daria, M. Asaduzzaman and M.R. Islam, Infect. Prev. Pract., 3, 100159 (2021); https://doi.org/10.1016/j.infpip.2021.100159
J.M. Aubry, J. Am. Chem. Soc., 107, 5844 (1985); https://doi.org/10.1021/ja00307a002
S. Ranganathan and V. Sieber, Catalysts, 8, 379 (2018); https://doi.org/10.3390/catal8090379
M.J. Liou and M.C. Lu, J. Hazard. Mater., 151, 540 (2008); https://doi.org/10.1016/j.jhazmat.2007.06.016
Y. Voloshin, R. Halder and A. Lawal, Catal. Today, 125, 40 (2007); https://doi.org/10.1016/j.cattod.2007.01.043
W. Chen, F. Chen, G. Zhang, S. Kong, W. Cai, J. Wang, L. Du and C. Wu, Mater. Lett., 239, 94 (2019); https://doi.org/10.1016/j.matlet.2018.12.064
S.H. Lee, I.I. Nedrygailov, S. Oh and J.Y. Park, Catal. Today, 303, 282 (2018); https://doi.org/10.1016/j.cattod.2017.09.038
G. Fang, Y. Deng, M. Huang, D.D. Dionysiou, C. Liu and D. Zhou, Environ. Sci. Technol., 52, 2178 (2018); https://doi.org/10.1021/acs.est.7b05303
T. Kim, J.S. Hwang and S. Kwon, Lab Chip, 7, 835 (2007); https://doi.org/10.1039/b700040e
M.A. Hasnat, M.M. Rahman, S.M. Borhanuddin, A. Siddiqua, N.M. Bahadur and M.R. Karim, Catal. Commun., 12, 286 (2010); https://doi.org/10.1016/j.catcom.2010.10.001
L. Trotochaud and S.W. Boettcher, Scr. Mater., 74, 25 (2014); https://doi.org/10.1016/j.scriptamat.2013.07.019
D.E. McCoy, T. Feo, T.A. Harvey and R.O. Prum, Nat. Commun., 9, 1 (2018); https://doi.org/10.1038/s41467-017-02088-w
J.S. Kim, B. Kim, H. Kim and K. Kang, Adv. Energy Mater., 8, 1702774 (2018); https://doi.org/10.1002/aenm.201702774
X. Xu, F. Song and X. Hu, Nat. Commun., 7, 12324 (2016); https://doi.org/10.1038/ncomms12324
S.R. Ede and Z. Luo, J. Mater. Chem. A Mater. Energy Sustain., 9, 20131 (2021); https://doi.org/10.1039/D1TA04032D
M.A. Hasnat, M.S. Alam, M.M. Karim, M.A. Rashed and M. Machida, Appl. Catal. B: Environ., 107, 294 (2011); https://doi.org/10.1016/j.apcatb.2011.07.028
J.C. Hansen, J. Chem. Educ., 73, 728 (1996); https://doi.org/10.1021/ed073p728
H.A. Liebhafsky and A. Mohammad, J. Am. Chem. Soc., 55, 3977 (1933); https://doi.org/10.1021/ja01337a010
H.A. Liebhafsky, J. Am. Chem. Soc., 53, 896 (1931); https://doi.org/10.1021/ja01354a010
D.B. Broughton, R.L. Wentworth and M.E. Laing, J. Am. Chem. Soc., 69, 744 (1947); https://doi.org/10.1021/ja01196a004
D.B. Broughton and R.L. Wentworth, J. Am. Chem. Soc., 69, 741 (1947); https://doi.org/10.1021/ja01196a003
J.J. Rusek, J. Propulsion Power, 12, 574 (2012); https://doi.org/10.2514/3.24071
W. He, Y.T. Zhou, W.G. Wamer, X. Hu, X. Wu, Z. Zheng, M.D. Boudreau and J.-J. Yin, Biomaterials, 34, 765 (2013); https://doi.org/10.1016/j.biomaterials.2012.10.010
M.A. Hasan, M.I. Zaki, L. Pasupulety and K. Kumari, Appl. Catal. A Gen., 181, 171 (1999); https://doi.org/10.1016/S0926-860X(98)00430-X
R. Serra-Maia, M. Bellier, S. Chastka, K. Tranhuu, A. Subowo, J.D. Rimstidt, P.M. Usov, A.J. Morris and F.M. Michel, ACS Appl. Mater. Interfaces, 10, 21224 (2018); https://doi.org/10.1021/acsami.8b02345
A. Thetford, G.J. Hutchings, S.H. Taylor and D.J. Willock, The Decomposition of H2O2 over the Components of Au/TiO2 Catalysts. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society Publishing, pp. 1885–1899 (2011.
J. Hofmann, U. Freier, M. Wecks and S. Hohmann, Appl. Catal. B, 70, 447 (2007); https://doi.org/10.1016/j.apcatb.2005.11.023
V. Polshettiwar and R.S. Varma, Org. Biomol. Chem., 7, 37 (2009); https://doi.org/10.1039/B817669H
R. Serra-Maia, M. Bellier, S. Chastka, K. Tranhuu, A. Subowo, J.D. Rimstidt, P.M. Usov, A.J. Morris and F.M. Michel, ACS Appl. Mater. Interfaces, 10, 21224 (2018); https://doi.org/10.1021/acsami.8b02345
M.A. Hasnat, M.M. Rahman, I.A. Siddiquey, S.M. Borhanuddin, M.S. Alam, M.H. Rahman and A.M. Asiri, RSC Adv., 5, 46295 (2015); https://doi.org/10.1039/C5RA05620A
S.Q. Liu and H.X. Ju, Anal. Biochem., 307, 110 (2002); https://doi.org/10.1016/S0003-2697(02)00014-3
D.R. Shobha Jeykumari, S. Ramaprabhu and S. Sriman Narayanan, Carbon, 45, 1340 (2007); https://doi.org/10.1016/j.carbon.2007.01.006
M. Comotti, C. Della Pina, R. Matarrese and M. Rossi, Angew. Chem. Int. Ed., 43, 5812 (2004); https://doi.org/10.1002/anie.200460446
S. Kozuch and J.M.L. Martin, ACS Catal., 2, 2787 (2012); https://doi.org/10.1021/cs3005264