Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Investigation of Formic Acid involved Molecular Clusters with Atmospheric Acidic, Basic and Neutral Species
Corresponding Author(s) : Anu Mittal
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
New particle formation (NPF) is regarded as a main source of tropospheric aerosols. Formic acid (FA) is investigated as a source of NPF by studying its dimer, trimer and tetramer clusters with atmospheric nucleating species like H2O, H2S, MeNH2 and H2O2 employing quantum chemical methods. The structural characteristics, nature of interactions, interaction energies, harmonic vibrational frequencies, thermochemistry at ambient and tropospheric conditions are investigated employing DFT and MP2 methods. Acidic (H2S), basic (MeNH2) and neutral (H2O) nucleating precursors are chosen to study the effect of nature of these species on NPF. Results show that clusters of formic acid with MeNH2 have more stabilising effect than clusters with H2O, H2S and H2O2. The FA-MeNH2 clusters are formed spontaneously at ambient conditions while for others (H2O, H2O2) although the clusters are stable at ambient conditions, yet have positive binding free energy that becomes negative at tropospheric conditions. The cluster formation leads to significant red shifts and increased IR intensities for conventional hydrogen bond donor bond stretching vibrations relative to its monomeric units. For all the nucleating species, stability increases with the growth of clusters.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Khare, N. Kumar, K.M. Kumari and S.S. Srivastava, Rev. Geophys., 37, 227 (1999); https://doi.org/10.1029/1998rg900005
- E.A. Pillar-Little and M.I. Guzman, Environments, 5, 104 (2018); https://doi.org/10.3390/environments5090104
- Z. Liu, S.H.L. Yim, C. Wang and N.C. Lau, Geophys. Res. Lett., 45, 4410 (2018); https://doi.org/10.1029/2018GL077517
- S.H. Lee, H. Gordon, H. Yu, K. Lehtipalo, R. Haley, Y. Li and R. Zhang, J. Geophys. Res. Atmos., 124, 7098 (2019); https://doi.org/10.1029/2018JD029356
- J. Zhao, N.P. Levitt and R. Zhang, Geophys. Res. Lett., 32, L09802 (2005); https://doi.org/10.1029/2004GL022200
- J. Zhao, R. Zhang, K. Misawa and K. Shibuya, J. Photochem. Photobiol. Chem., 176, 199 (2005); https://doi.org/10.1016/j.jphotochem.2005.07.013
- W.C. Keene and J.N. Galloway, Tellus, 40B, 322 (1988); https://doi.org/10.1111/j.1600 0889.1988.tb00106.x
- T. Stavrakou, J.-F. Müller, J. Peeters, A. Razavi, L. Clarisse, C. Clerbaux, P.-F. Coheur, D. Hurtmans, M. De Mazière, C. Vigouroux, N.M. Deutscher, D.W.T. Griffith, N. Jones and C. Paton-Walsh, Nat. Geosci., 5, 26 (2012); https://doi.org/10.1038/ngeo1354
- M.M. Galloway, M.H. Powelson, N. Sedehi, S.E. Wood, K.D. Millage, J.A. Kononenko, A.D. Rynaski and D.O. De Haan, Environ. Sci. Technol., 48, 14417 (2014); https://doi.org/10.1021/es5044479
- M.T. Limon-Sanchez, J.L. Arriaga-Colina, S. Escalona-Segura and L.G. Ruiz-Suarez, Sci. Total Environ., 287, 203 (2002); https://doi.org/10.1016/S0048-9697(01)00985-8
- D.B. Millet, M. Baasandorj, D.K. Farmer, J.A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J.A. de Gouw, M. Graus, L. Hu, A. Koss, B.H. Lee, F.D. Lopez-Hilfiker, J.A. Neuman, F. Paulot, J. Peischl, I.B. Pollack, T.B. Ryerson, C. Warneke, B.J. Williams and J. Xu, Atmos. Chem. Phys., 15, 6283 (2015); https://doi.org/10.5194/acp-15-6283-2015
- R.J. Yokelson, T.J. Christian, T.G. Karl and A. Guenther, Atmos. Chem. Phys., 8, 3509 (2008); https://doi.org/10.5194/acp-8-3509-2008
- T.E. Graedel and T. Eisner, Tellus, 40, 335 (1988); https://doi.org/10.3402/tellusb.v40i5.15995
- R.W. Talbot, M.O. Andreae, H. Berrisheim, D.J. Jacob and K.M. Beecher, J. Geophys. Res., 95(D10), 16799 (1990); https://doi.org/10.1029/JD095iD10p16799
- E. Sanhueza and M.O. Andreae, Geophys. Res. Lett., 18, 1707 (1991); https://doi.org/10.1029/91GL01565
- F. Paulot, D. Wunch, J.D. Crounse, G.C. Toon, D.B. Millet, P.F. DeCarlo, C. Vigouroux, N.M. Deutscher, G. González Abad, J. Notholt, T. Warneke, J.W. Hannigan, C. Warneke, J.A. de Gouw, E.J. Dunlea, M. De Mazière, D.W.T. Griffith, P. Bernath, J.L. Jimenez and P.O. Wennberg, Atmos. Chem. Phys., 11, 1989 (2011); https://doi.org/10.5194/acp-11-1989-2011
- J. Liesivuori and H. Savolainen, Pharmacol. Toxicol., 69, 157 (1991); https://doi.org/10.1111/j.1600 0773.1991.tb01290.x
- A. Chebbi and P. Carlier, Atmos. Environ., 30, 4233 (1996); https://doi.org/10.1016/1352 2310(96)00102-1
- D.J. Jacob, J. Geophys. Res., 91(D9), 9807 (1986); https://doi.org/10.1029/JD091iD09p09807
- W.C. Keene, B.W. Mosher, D.J. Jacob, W. Munger, R.W. Talbot, R.S. Artz, J.R. Maben, B.C. Daube and J.N. Galloway, J. Geophys. Res., 100(D5), 9345 (1995); https://doi.org/10.1029/94JD01247
- C.D. Hatch, R.V. Gough and M.A. Tolbert, Atmos. Chem. Phys., 7, 4445 (2007); https://doi.org/10.5194/acp-7-4445-2007
- D. Bousiotis, F.D. Pope, D.C.S. Beddows, M. Dall’Osto, A. Massling, J.K. Nøjgaard, C. Nordstrøm, J.V. Niemi, H. Portin, T. Petäjä, N. Perez, A. Alastuey, X. Querol, G. Kouvarakis, N. Mihalopoulos, S. Vratolis,
- K. Eleftheriadis, A. Wiedensohler, K. Weinhold, M. Merkel, T. Tuch and R.M. Harrison, Atmos. Chem. Phys., 21, 11905 (2021); https://doi.org/10.5194/acp-21-11905-2021
- V.M. Kerminen, X. Chen, V. Vakkari, T. Petaja, M. Kulmala and F. Bianchi, Environ. Res. Lett., 13, 103003 (2018); https://doi.org/10.1088/1748-9326/aadf3c
- D.E. Schraufnagel, Exp. Mol. Med., 52, 311 (2020); https://doi.org/10.1038/s12276-020-0403-3
- https://www.who.int/health-topics/air-pollution#tab=tab_1
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Jr and T. Montgomery, Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.01,Gaussian, Inc, Wallingford CT, 2004.
- S.F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1970); https://doi.org/10.1080/00268977000101561
- X. Jiang, N.T. Tsona, S. Tang and L. Du, Spectrochim. Acta A, 191, 155 (2018); https://doi.org/10.1016/j.saa.2017.10.006
- Q. Zhang and L. Du, Comput. Theor. Chem., 1078, 123 (2016); https://doi.org/10.1016/j.comptc.2016.01.007
- G. Schmitz and J. Elm, ACS Omega, 5, 7601 (2020); https://doi.org/10.1021/acsomega.0c00436
- A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
- H. Kawanami, Y. Himeda and G. Laurenczy, Eds.: R. van Eldik and C.D. Hubbard, Advances in Inorganic Chemistry, vol. 70, Chap. 10, p. 395 (2017).
- T.J. Henderson and H. Salem, Eds.: H. Salem and S.A. Katz, Aerobiology: The Toxicology of Airborne Pathogens and Toxins, Chap. 1 (2016).
- Z. Zhou, Y. Shi and X. Zhou, J. Phys. Chem. A, 108, 813 (2004); https://doi.org/10.1021/jp030642j
- L.A. Curtiss, D.J. Frurip and M. Blander, J. Chem. Phys., 71, 2703 (1979); https://doi.org/10.1063/1.438628
- R. Kalescky, E. Kraka and D. Cremer, J. Chem. Phys., 140, 084315 (2014); https://doi.org/10.1063/1.4866696
- M. Abdollahi and A. Hosseini, Reference Module in Biomedical Sciences: Encyclopedia of Toxicology, Ed. 3, p. 971 (2014).
- G.W. Schade and P.J. Crutzen, J. Atmos. Chem., 22, 319 (1995); https://doi.org/10.1007/BF00696641
- S.N. Behera, M. Sharma, V.P. Aneja and R. Balasubramanian, Environ. Sci. Pollut. Res. Int., 20, 8092 (2013); https://doi.org/10.1007/s11356-013-2051-9
- T. Kurten, V. Loukonen, H. Vehkamaki and M. Kulmala, Atmos. Chem. Phys., 8, 4095 (2008); https://doi.org/10.5194/acp-8-4095-2008
- Y. Hong, Y.-R. Liu, H. Wen, S.-K. Miao, T. Huang, X.-Q. Peng, S. Jiang, Y.-J. Feng and W. Huang, RSC Adv., 8, 7225 (2018); https://doi.org/10.1039/C7RA13670F
References
P. Khare, N. Kumar, K.M. Kumari and S.S. Srivastava, Rev. Geophys., 37, 227 (1999); https://doi.org/10.1029/1998rg900005
E.A. Pillar-Little and M.I. Guzman, Environments, 5, 104 (2018); https://doi.org/10.3390/environments5090104
Z. Liu, S.H.L. Yim, C. Wang and N.C. Lau, Geophys. Res. Lett., 45, 4410 (2018); https://doi.org/10.1029/2018GL077517
S.H. Lee, H. Gordon, H. Yu, K. Lehtipalo, R. Haley, Y. Li and R. Zhang, J. Geophys. Res. Atmos., 124, 7098 (2019); https://doi.org/10.1029/2018JD029356
J. Zhao, N.P. Levitt and R. Zhang, Geophys. Res. Lett., 32, L09802 (2005); https://doi.org/10.1029/2004GL022200
J. Zhao, R. Zhang, K. Misawa and K. Shibuya, J. Photochem. Photobiol. Chem., 176, 199 (2005); https://doi.org/10.1016/j.jphotochem.2005.07.013
W.C. Keene and J.N. Galloway, Tellus, 40B, 322 (1988); https://doi.org/10.1111/j.1600 0889.1988.tb00106.x
T. Stavrakou, J.-F. Müller, J. Peeters, A. Razavi, L. Clarisse, C. Clerbaux, P.-F. Coheur, D. Hurtmans, M. De Mazière, C. Vigouroux, N.M. Deutscher, D.W.T. Griffith, N. Jones and C. Paton-Walsh, Nat. Geosci., 5, 26 (2012); https://doi.org/10.1038/ngeo1354
M.M. Galloway, M.H. Powelson, N. Sedehi, S.E. Wood, K.D. Millage, J.A. Kononenko, A.D. Rynaski and D.O. De Haan, Environ. Sci. Technol., 48, 14417 (2014); https://doi.org/10.1021/es5044479
M.T. Limon-Sanchez, J.L. Arriaga-Colina, S. Escalona-Segura and L.G. Ruiz-Suarez, Sci. Total Environ., 287, 203 (2002); https://doi.org/10.1016/S0048-9697(01)00985-8
D.B. Millet, M. Baasandorj, D.K. Farmer, J.A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J.A. de Gouw, M. Graus, L. Hu, A. Koss, B.H. Lee, F.D. Lopez-Hilfiker, J.A. Neuman, F. Paulot, J. Peischl, I.B. Pollack, T.B. Ryerson, C. Warneke, B.J. Williams and J. Xu, Atmos. Chem. Phys., 15, 6283 (2015); https://doi.org/10.5194/acp-15-6283-2015
R.J. Yokelson, T.J. Christian, T.G. Karl and A. Guenther, Atmos. Chem. Phys., 8, 3509 (2008); https://doi.org/10.5194/acp-8-3509-2008
T.E. Graedel and T. Eisner, Tellus, 40, 335 (1988); https://doi.org/10.3402/tellusb.v40i5.15995
R.W. Talbot, M.O. Andreae, H. Berrisheim, D.J. Jacob and K.M. Beecher, J. Geophys. Res., 95(D10), 16799 (1990); https://doi.org/10.1029/JD095iD10p16799
E. Sanhueza and M.O. Andreae, Geophys. Res. Lett., 18, 1707 (1991); https://doi.org/10.1029/91GL01565
F. Paulot, D. Wunch, J.D. Crounse, G.C. Toon, D.B. Millet, P.F. DeCarlo, C. Vigouroux, N.M. Deutscher, G. González Abad, J. Notholt, T. Warneke, J.W. Hannigan, C. Warneke, J.A. de Gouw, E.J. Dunlea, M. De Mazière, D.W.T. Griffith, P. Bernath, J.L. Jimenez and P.O. Wennberg, Atmos. Chem. Phys., 11, 1989 (2011); https://doi.org/10.5194/acp-11-1989-2011
J. Liesivuori and H. Savolainen, Pharmacol. Toxicol., 69, 157 (1991); https://doi.org/10.1111/j.1600 0773.1991.tb01290.x
A. Chebbi and P. Carlier, Atmos. Environ., 30, 4233 (1996); https://doi.org/10.1016/1352 2310(96)00102-1
D.J. Jacob, J. Geophys. Res., 91(D9), 9807 (1986); https://doi.org/10.1029/JD091iD09p09807
W.C. Keene, B.W. Mosher, D.J. Jacob, W. Munger, R.W. Talbot, R.S. Artz, J.R. Maben, B.C. Daube and J.N. Galloway, J. Geophys. Res., 100(D5), 9345 (1995); https://doi.org/10.1029/94JD01247
C.D. Hatch, R.V. Gough and M.A. Tolbert, Atmos. Chem. Phys., 7, 4445 (2007); https://doi.org/10.5194/acp-7-4445-2007
D. Bousiotis, F.D. Pope, D.C.S. Beddows, M. Dall’Osto, A. Massling, J.K. Nøjgaard, C. Nordstrøm, J.V. Niemi, H. Portin, T. Petäjä, N. Perez, A. Alastuey, X. Querol, G. Kouvarakis, N. Mihalopoulos, S. Vratolis,
K. Eleftheriadis, A. Wiedensohler, K. Weinhold, M. Merkel, T. Tuch and R.M. Harrison, Atmos. Chem. Phys., 21, 11905 (2021); https://doi.org/10.5194/acp-21-11905-2021
V.M. Kerminen, X. Chen, V. Vakkari, T. Petaja, M. Kulmala and F. Bianchi, Environ. Res. Lett., 13, 103003 (2018); https://doi.org/10.1088/1748-9326/aadf3c
D.E. Schraufnagel, Exp. Mol. Med., 52, 311 (2020); https://doi.org/10.1038/s12276-020-0403-3
https://www.who.int/health-topics/air-pollution#tab=tab_1
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Jr and T. Montgomery, Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.01,Gaussian, Inc, Wallingford CT, 2004.
S.F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1970); https://doi.org/10.1080/00268977000101561
X. Jiang, N.T. Tsona, S. Tang and L. Du, Spectrochim. Acta A, 191, 155 (2018); https://doi.org/10.1016/j.saa.2017.10.006
Q. Zhang and L. Du, Comput. Theor. Chem., 1078, 123 (2016); https://doi.org/10.1016/j.comptc.2016.01.007
G. Schmitz and J. Elm, ACS Omega, 5, 7601 (2020); https://doi.org/10.1021/acsomega.0c00436
A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
H. Kawanami, Y. Himeda and G. Laurenczy, Eds.: R. van Eldik and C.D. Hubbard, Advances in Inorganic Chemistry, vol. 70, Chap. 10, p. 395 (2017).
T.J. Henderson and H. Salem, Eds.: H. Salem and S.A. Katz, Aerobiology: The Toxicology of Airborne Pathogens and Toxins, Chap. 1 (2016).
Z. Zhou, Y. Shi and X. Zhou, J. Phys. Chem. A, 108, 813 (2004); https://doi.org/10.1021/jp030642j
L.A. Curtiss, D.J. Frurip and M. Blander, J. Chem. Phys., 71, 2703 (1979); https://doi.org/10.1063/1.438628
R. Kalescky, E. Kraka and D. Cremer, J. Chem. Phys., 140, 084315 (2014); https://doi.org/10.1063/1.4866696
M. Abdollahi and A. Hosseini, Reference Module in Biomedical Sciences: Encyclopedia of Toxicology, Ed. 3, p. 971 (2014).
G.W. Schade and P.J. Crutzen, J. Atmos. Chem., 22, 319 (1995); https://doi.org/10.1007/BF00696641
S.N. Behera, M. Sharma, V.P. Aneja and R. Balasubramanian, Environ. Sci. Pollut. Res. Int., 20, 8092 (2013); https://doi.org/10.1007/s11356-013-2051-9
T. Kurten, V. Loukonen, H. Vehkamaki and M. Kulmala, Atmos. Chem. Phys., 8, 4095 (2008); https://doi.org/10.5194/acp-8-4095-2008
Y. Hong, Y.-R. Liu, H. Wen, S.-K. Miao, T. Huang, X.-Q. Peng, S. Jiang, Y.-J. Feng and W. Huang, RSC Adv., 8, 7225 (2018); https://doi.org/10.1039/C7RA13670F