Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Pre-column Derivatization and Separation of Diastereomeric-Derivatives of Racemic Mexiletine and Confirmation of Elution Order and Molecular Configuration
Corresponding Author(s) : S. Alwera
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
Present study describes the synthesis of cyanuric chloride based four active chiral reagents (ACRs) and their application in the enantiomeric separation of (RS)-mexiletine. Herein, four cyanuric chloride-based ACRs were prepared by introducing L-proline derivatives under nucleophilic substitution reaction. The synthesized ACRs were characterized by different spectroscopic techniques. Racemic mexiletine hydrochloride was used for the enantio-recognition study. All the four ACRs were used to convert (RS)-mexiletine into related diastereomeric derivatives and then separated on the C18-column of RP-HPLC. The different parameters such as sample amount, the concentration of mobile phase, organic modifier and pump pressure were varied to optimize separation conditions. The energy-minimized structures of synthesized diasteromeric derivatives (DDs) were developed using DFT calculations. The validation study was conducted for the developed method and correlation-coefficient, calibration range, LOD and LOQ calculated. The stability and recovery were calculated by inter and intraday assay.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Pandya, J. Mahyavanshi and S. Bakshi, Rasayan J. Chem., 14, 1183 (2021); https://doi.org/10.31788/RJC.2021.1426277
- B. Akkus, B. Kiskan and Y. Yagci, Polym. Chem., 11, 1025 (2020); https://doi.org/10.1039/C9PY01631G
- Z. Zhou, D. Lu, Y. Feng and L. Dong, IOP Conf. Ser. Earth Environ. Sci., 714, 032085 (2021); https://doi.org/10.1088/1755-1315/714/3/032085
- M. Umadevi, R. Rathinam, S. Poornima, T. Santhi and S. Pattabhi, Asian J. Chem., 33, 1919 (2021); https://doi.org/10.14233/ajchem.2021.23330
- R. Rathinam and S. Pattabhi, Indian J. Ecol., 46, 167 (2019).
- A. Soozanipour, A. Taheri-Kafrani, M. Barkhori and M. Nasrollahzadeh, J. Colloid Interface Sci., 536, 261 (2019); https://doi.org/10.1016/j.jcis.2018.10.053
- M. Govindaraj, R. Rathinam, C. Sukumar, M. Uthayasankar and S. Pattabhi, Environ. Technol., 34, 503 (2013); https://doi.org/10.1080/09593330.2012.701333
- V.S. Talismanov, S.V. Popkov, O.G. Karmanova, S.S. Zykova, M.V. Shustov, L.A. Zhuravleva and N.G. Tokareva, Rasayan J. Chem., 14, 1711 (2021); https://doi.org/10.31788/RJC.2021.1436537
- G.V. Tsaplin, S.S. Grishin, E.P. Baberkina, S.V. Popkov, V.S. Talismanov, O.G. Karmanova and S.S. Zykova, Rasayan J. Chem., 14, 1816 (2021); https://doi.org/10.31788/RJC.2021.1436574
- N. Deka, J. Barman, S. Kasthuri, V. Nutalapati and G.K. Dutta, Appl. Surf. Sci., 511, 145576 (2020); https://doi.org/10.1016/j.apsusc.2020.145576
- S. Alwera and R. Bhushan, Biomed. Chromatogr., 30, 1772 (2016); https://doi.org/10.1002/bmc.3752
- V. Alwera, S. Sehlangia and S. Alwera, Biomed. Chromatogr., 34, e4954 (2020); https://doi.org/10.1002/bmc.4954
- H.S. Al-Shehri, V. Alwera, K.C. Nilugal and S. Alwera, Asian J. Chem., 34, 376 (2022); https://doi.org/10.14233/ajchem.2022.23550
- G. Blotny, Tetrahedron, 62, 9507 (2006); https://doi.org/10.1016/j.tet.2006.07.039
- H. Bruckner and B. Strecker, J. Chromatogr. A, 627, 97 (1992); https://doi.org/10.1016/0021 9673(92)87190-J
- H. Bruckner and M. Wachsmann, J. Chromatogr. A, 728, 447 (1996); https://doi.org/10.1016/0021 9673(95)01204-4
- H.M. Ma, Z.H. Wang and M.H. Su, J. Chromatogr. A, 955, 125 (2002); https://doi.org/10.1016/S0021 9673(02)00230-3
- C.H. Lin, C.E. Lin, C.C. Chen and L.F. Liao, J. Chin. Chem. Soc., 48(6A), 1069 (2001); https://doi.org/10.1002/jccs.200100157
- C.H. Lin, J.H. Yang and J.C. Wu, J. Chin. Chem. Soc., 52, 799 (2005); https://doi.org/10.1002/jccs.200500112
- S. Alwera, ACS Sustain. Chem. & Eng., 6, 11653 (2018); https://doi.org/10.1021/acssuschemeng.8b01869
- J.L. Andrews, S.O.N. Lill, S. Freitag-Pohl, D.C. Apperley, D.S. Yufit, A.S. Batsanov, M.T. Mulvee, K. Edkins, J.F. McCabe, D.J. Berry, M.R. Probert and J.W. Steed, Cryst. Growth Des., 21, 7150 (2021); https://doi.org/10.1021/acs.cgd.1c01009
- T. Hézsõ, M. Naveed, C. Dienes, D. Kiss, J. Prorok, T. Árpádffy-Lovas, R. Varga, E. Fujii, T. Mercan, L. Topal, K. Kistamás, N. Szentandrássy, J. Almássy, N. Jost, J. Magyar, T. Bányász, I. Baczkó, A. Varró, P.P. Nánási, L. Virág and B. Horváth, Sci. Rep., 11, 9565 (2021); https://doi.org/10.1038/s41598-021-88903-3
- C. Heatwole, E. Luebbe, S. Rosero, K. Eichinger, W. Martens, J. Hilbert, J. Dekdebrun, N. Dilek, C. Zizzi, N. Johnson, A. Puwanant, R. Tawil, G. Schifitto, C.A. Beck, J.F. Richeson, W. Zareba, C. Thornton, M.P. McDermott and R. Moxley III, Neurology, 96, e228 (2021); https://doi.org/10.1212/WNL.0000000000011002
- M. Johnson, J. Gomez-Galeno, D. Ryan, K. Okolotowicz, W.L. McKeithan, K.J. Sampson, R.S. Kass, M. Mercola and J.R. Cashman, Bioorg. Med. Chem. Lett., 46, 128162 (2021); https://doi.org/10.1016/j.bmcl.2021.128162
- R. Vio, A. Zorzi, L. Bello, V. Bozzoni, A. Botta, F. Rivezzi, L. Leoni, F. Migliore, E. Bertaglia, S. Iliceto, E. Pegoraro, D. Corrado and C. Calore, Heart Rhythm, 17, 1944 (2020); https://doi.org/10.1016/j.hrthm.2020.05.043
- C. Zheng, D. Zhang, Q. Wu and X. Lin, Chirality, 23, 99 (2011); https://doi.org/10.1002/chir.20880
- R. Rathinam and M. Govindaraj, Nat. Environ. Pollut. Technol., 20, 1069 (2021); https://doi.org/10.46488/NEPT.2021.v20i03.014. 23
- V. Alwera, S. Sehlangia and S. Alwera, Sep. Sci. Technol., 56, 2278 (2021); https://doi.org/10.1080/01496395.2020.1819826
- V. Alwera, S. Sehlangia and S. Alwera, J. Liq. Chromatogr. Rel. Technol., 43, 742 (2020); https://doi.org/10.1080/10826076.2020.1798250
- S. Alwera and R. Bhushan, J. Liq. Chromatogr. Rel. Technol., 40, 707 (2017); https://doi.org/10.1080/10826076.2017.1348954
- S. Alwera, V. Alwera and S. Sehlangia, Biomed. Chromatogr., 34, e4943 (2020); https://doi.org/10.1002/bmc.4943
- M.C.M. van Oers, W.S. Veldmate, J.C.M. van Hest and F.P.J.T. Rutjes, Polym. Chem., 6, 5358 (2015); https://doi.org/10.1039/C5PY00872G
- P. Barraclough, C.A. Spray and D.W. Young, Tetrahedron Lett., 46, 4653 (2005); https://doi.org/10.1016/j.tetlet.2005.04.126
- R. Rathinam, M. Govindaraj, K. Vijayakumar and S. Pattabhi, Desalination Water Treat., 57, 16995 (2016); https://doi.org/10.1080/19443994.2015.1086960
- S. Alwera and R. Bhushan, Biomed. Chromatogr., 31, e3983 (2017); https://doi.org/10.1002/bmc.3983.
- S. Alwera and R. Bhushan, Biomed. Chromatogr., 30, 1223 (2016); https://doi.org/10.1002/bmc.3671
- ICH, Q2B Document: Validation of analytical procedures. International conference of harmonization: Geneva, 1996, 1-13.
References
J.M. Pandya, J. Mahyavanshi and S. Bakshi, Rasayan J. Chem., 14, 1183 (2021); https://doi.org/10.31788/RJC.2021.1426277
B. Akkus, B. Kiskan and Y. Yagci, Polym. Chem., 11, 1025 (2020); https://doi.org/10.1039/C9PY01631G
Z. Zhou, D. Lu, Y. Feng and L. Dong, IOP Conf. Ser. Earth Environ. Sci., 714, 032085 (2021); https://doi.org/10.1088/1755-1315/714/3/032085
M. Umadevi, R. Rathinam, S. Poornima, T. Santhi and S. Pattabhi, Asian J. Chem., 33, 1919 (2021); https://doi.org/10.14233/ajchem.2021.23330
R. Rathinam and S. Pattabhi, Indian J. Ecol., 46, 167 (2019).
A. Soozanipour, A. Taheri-Kafrani, M. Barkhori and M. Nasrollahzadeh, J. Colloid Interface Sci., 536, 261 (2019); https://doi.org/10.1016/j.jcis.2018.10.053
M. Govindaraj, R. Rathinam, C. Sukumar, M. Uthayasankar and S. Pattabhi, Environ. Technol., 34, 503 (2013); https://doi.org/10.1080/09593330.2012.701333
V.S. Talismanov, S.V. Popkov, O.G. Karmanova, S.S. Zykova, M.V. Shustov, L.A. Zhuravleva and N.G. Tokareva, Rasayan J. Chem., 14, 1711 (2021); https://doi.org/10.31788/RJC.2021.1436537
G.V. Tsaplin, S.S. Grishin, E.P. Baberkina, S.V. Popkov, V.S. Talismanov, O.G. Karmanova and S.S. Zykova, Rasayan J. Chem., 14, 1816 (2021); https://doi.org/10.31788/RJC.2021.1436574
N. Deka, J. Barman, S. Kasthuri, V. Nutalapati and G.K. Dutta, Appl. Surf. Sci., 511, 145576 (2020); https://doi.org/10.1016/j.apsusc.2020.145576
S. Alwera and R. Bhushan, Biomed. Chromatogr., 30, 1772 (2016); https://doi.org/10.1002/bmc.3752
V. Alwera, S. Sehlangia and S. Alwera, Biomed. Chromatogr., 34, e4954 (2020); https://doi.org/10.1002/bmc.4954
H.S. Al-Shehri, V. Alwera, K.C. Nilugal and S. Alwera, Asian J. Chem., 34, 376 (2022); https://doi.org/10.14233/ajchem.2022.23550
G. Blotny, Tetrahedron, 62, 9507 (2006); https://doi.org/10.1016/j.tet.2006.07.039
H. Bruckner and B. Strecker, J. Chromatogr. A, 627, 97 (1992); https://doi.org/10.1016/0021 9673(92)87190-J
H. Bruckner and M. Wachsmann, J. Chromatogr. A, 728, 447 (1996); https://doi.org/10.1016/0021 9673(95)01204-4
H.M. Ma, Z.H. Wang and M.H. Su, J. Chromatogr. A, 955, 125 (2002); https://doi.org/10.1016/S0021 9673(02)00230-3
C.H. Lin, C.E. Lin, C.C. Chen and L.F. Liao, J. Chin. Chem. Soc., 48(6A), 1069 (2001); https://doi.org/10.1002/jccs.200100157
C.H. Lin, J.H. Yang and J.C. Wu, J. Chin. Chem. Soc., 52, 799 (2005); https://doi.org/10.1002/jccs.200500112
S. Alwera, ACS Sustain. Chem. & Eng., 6, 11653 (2018); https://doi.org/10.1021/acssuschemeng.8b01869
J.L. Andrews, S.O.N. Lill, S. Freitag-Pohl, D.C. Apperley, D.S. Yufit, A.S. Batsanov, M.T. Mulvee, K. Edkins, J.F. McCabe, D.J. Berry, M.R. Probert and J.W. Steed, Cryst. Growth Des., 21, 7150 (2021); https://doi.org/10.1021/acs.cgd.1c01009
T. Hézsõ, M. Naveed, C. Dienes, D. Kiss, J. Prorok, T. Árpádffy-Lovas, R. Varga, E. Fujii, T. Mercan, L. Topal, K. Kistamás, N. Szentandrássy, J. Almássy, N. Jost, J. Magyar, T. Bányász, I. Baczkó, A. Varró, P.P. Nánási, L. Virág and B. Horváth, Sci. Rep., 11, 9565 (2021); https://doi.org/10.1038/s41598-021-88903-3
C. Heatwole, E. Luebbe, S. Rosero, K. Eichinger, W. Martens, J. Hilbert, J. Dekdebrun, N. Dilek, C. Zizzi, N. Johnson, A. Puwanant, R. Tawil, G. Schifitto, C.A. Beck, J.F. Richeson, W. Zareba, C. Thornton, M.P. McDermott and R. Moxley III, Neurology, 96, e228 (2021); https://doi.org/10.1212/WNL.0000000000011002
M. Johnson, J. Gomez-Galeno, D. Ryan, K. Okolotowicz, W.L. McKeithan, K.J. Sampson, R.S. Kass, M. Mercola and J.R. Cashman, Bioorg. Med. Chem. Lett., 46, 128162 (2021); https://doi.org/10.1016/j.bmcl.2021.128162
R. Vio, A. Zorzi, L. Bello, V. Bozzoni, A. Botta, F. Rivezzi, L. Leoni, F. Migliore, E. Bertaglia, S. Iliceto, E. Pegoraro, D. Corrado and C. Calore, Heart Rhythm, 17, 1944 (2020); https://doi.org/10.1016/j.hrthm.2020.05.043
C. Zheng, D. Zhang, Q. Wu and X. Lin, Chirality, 23, 99 (2011); https://doi.org/10.1002/chir.20880
R. Rathinam and M. Govindaraj, Nat. Environ. Pollut. Technol., 20, 1069 (2021); https://doi.org/10.46488/NEPT.2021.v20i03.014. 23
V. Alwera, S. Sehlangia and S. Alwera, Sep. Sci. Technol., 56, 2278 (2021); https://doi.org/10.1080/01496395.2020.1819826
V. Alwera, S. Sehlangia and S. Alwera, J. Liq. Chromatogr. Rel. Technol., 43, 742 (2020); https://doi.org/10.1080/10826076.2020.1798250
S. Alwera and R. Bhushan, J. Liq. Chromatogr. Rel. Technol., 40, 707 (2017); https://doi.org/10.1080/10826076.2017.1348954
S. Alwera, V. Alwera and S. Sehlangia, Biomed. Chromatogr., 34, e4943 (2020); https://doi.org/10.1002/bmc.4943
M.C.M. van Oers, W.S. Veldmate, J.C.M. van Hest and F.P.J.T. Rutjes, Polym. Chem., 6, 5358 (2015); https://doi.org/10.1039/C5PY00872G
P. Barraclough, C.A. Spray and D.W. Young, Tetrahedron Lett., 46, 4653 (2005); https://doi.org/10.1016/j.tetlet.2005.04.126
R. Rathinam, M. Govindaraj, K. Vijayakumar and S. Pattabhi, Desalination Water Treat., 57, 16995 (2016); https://doi.org/10.1080/19443994.2015.1086960
S. Alwera and R. Bhushan, Biomed. Chromatogr., 31, e3983 (2017); https://doi.org/10.1002/bmc.3983.
S. Alwera and R. Bhushan, Biomed. Chromatogr., 30, 1223 (2016); https://doi.org/10.1002/bmc.3671
ICH, Q2B Document: Validation of analytical procedures. International conference of harmonization: Geneva, 1996, 1-13.