Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ultrasonic, Refractometry, FT-IR and DFT Studies on Hydrogen Bonding Interactions of Ethylene Glycol/Hexanol Binary Mixtures
Corresponding Author(s) : S. Sreehari Sastry
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
The density (ρ), ultrasonic velocity (U), viscosity (η) and refractometry (nD) measurements are performed on the ethylene glycol/hexanol binary liquid mixtures in the range of temperatures 298.15-323.15 K. Various parameters such as adiabatic compressibility (β), acoustic impedance (Z), intermolecular free length (Lf), internal pressure (π) and relaxation time (τ) were calculated based on the experimentally determined values. The excess parameters were calculated to interpret the hydrogen bond networks and environment associated with the liquid solution. The interaction energy between the mixture components is analyzed using the DFT-B3LYP calculations using 6-311+G(d,p), 6-311++G(d,p) basis sets. The FT-IR spectra support the hydrogen bond in the system. The optimization energy, dipole moment of the components were also represented to correlate the measured parameters. The various theories of ultrasonic velocities and mixing rules for refractive index values were also attempted to estimate the ultrasonic speed, refractive index values of the ethylene glycol/hexanol binary system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.S. Reddy and M. Satyanarayana, Eur. J. Biomed. Pharm. Sci., 5, 1194 (2018).
- D. Chinnarao, C.V. Padmarao, K. Raja, M. Srilatha and B.V. Rao, Int. J. Eng. Res. Tech., 9, 94 (2020).
- S. Thirumaran, J.E. Jayakumar and B.H. Dhanasundaram, E-J. Chem., 7, 465 (2010); https://doi.org/10.1155/2010/735216
- M.K. Praharaj and A. Satapathy, Indian J. Nat. Sci., 10, 19721 (2020).
- A.M. Ghosh and J.N. Ramteke, Der Chemica Sinica, 8, 291 (2017).
- A. Shakila, R. Raju, T. Srinivasa Krishna, R. Dey and V. Pandiyan, Phys. Chem. Liq., 58, 263 (2020); https://doi.org/10.1080/00319104.2018.1564752
- A. Saini, H. Joshi, K. Kukreja and R. Dey, J. Mol. Liq., 223, 165 (2016); https://doi.org/10.1016/j.molliq.2016.08.046
- P. Vasanthara, V. Pandiyan and A.N. Kannappan, J. Asian Appl. Sci., 2, 169 (2009); https://doi.org/10.3923/ajaps.2009.169.176
- A.K. Nain, Phys. Chem. Liq., 45, 371 (2007); https://doi.org/10.1080/00319100701230405
- W. Zÿ Wirbla, A. Sikorska and B.B.J. Linde, J. Mol. Struct., 743, 49 (2005); https://doi.org/10.1016/j.molstruc.2005.02.019
- M. Kondaiah, K. Sreekanth and Sk. Md, J. Chem. Pharm. Res., 6, 1243 (2014).
- N. Chakraborty and K.C. Juglan, Eur. J. Mol. Clin. Med., 7, 3580 (2020).
- K. Kaur, K.C. Juglan, H. Kumar and V. Sharma, Mater. Today Proc., 21, 1875 (2020); https://doi.org/10.1016/j.matpr.2020.01.244
- S. Kothai, Asian J. Chem., 19, 5134 (2007).
- N.G. Tsierkezos and M.M. Palaiologou, Phys. Chem. Liq., 47, 447 (2009); https://doi.org/10.1080/00319100802104855
- C.E.H. Schmelzer, W. Zÿwirbla, E. Rosenfeld and B.B.J. Linde, J. Mol. Struct., 699, 47 (2004); https://doi.org/10.1016/j.molstruc.2004.04.027
- K. Kaur, I. Behal, K.C. Juglan and H. Kumar, J. Chem. Thermodyn., 125, 93 (2018); https://doi.org/10.1016/j.jct.2018.05.016
- H.A. Lorentz, The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat, Kessinger Publishing, Whitefish, Flathead, Montana, United States, Ed.: 2, pp. 350 (1916).
- O. Weiner, Berichte, 62, 256 (1910).
- W. Heller, Phys. Rev., 68, 5 (1945); https://doi.org/10.1103/PhysRev.68.5
- D. Dale and F. Gladstone, Philos. Trans., 148, 887 (1958).
- K. Narendra, P. Narayanamu and C. Srinivasu, Asian J. Appl. Sci., 4, 535 (2011); https://doi.org/10.3923/ajaps.2011.535.541
- S.S. Ubarhande, A.S. Burghate, B.N. Berad and J.D. Turak, Rasayan J. Chem., 4, 585 (2011).
- S.O. Isehunwa, E.B. Olanisebe, O.O. Ajiboye and S.A. Akintola, Afr. J. Pure Appl. Chem., 10, 58 (2015); https://doi.org/10.5897/AJPAC2015.0613
- R. Mehra, Proc. Indian Acad. Sci. (Chem. Sci.), 115, 147 (2003); https://doi.org/10.1007/BF02716982
- A.Z. Tasic, B.D. Djordjevic, D.K. Grozdanic and N. Radojkovic, J. Chem. Eng. Data, 37, 310 (1992); https://doi.org/10.1021/je00007a009
- Q.M. Omar, J.-N. Jaubert and J.A. Awan, Int. J. Chem. Eng., 2018, 8689534 (2018); https://doi.org/10.1155/2018/8689534
- Ashima, K.C. Juglan and H. Kumar, Results Chem., 2, 100049 (2020); https://doi.org/10.1016/j.rechem.2020.100049
- L. Guganathan and S. Kumar, Int. J. Mater. Sci., 12, 89 (2017).
- S.K. Ray, J. Rath and C. Dwivedi, Phys. Chem. Liq., 39, 227 (2001); https://doi.org/10.1080/00319100108030341
- S.M. Tawfik and F.M. Farag, Egypt. J. Chem., 61, 310 (2018); https://doi.org/10.21608/ejchem.2018.2347.1195
- S.D. Deshmukh, K.L. Pattebahadur, P.B. Undre and S.S.P.W. Khirade, Bionano Frontier, 8, 223 (2015).
- O. Nomoto, J. Phys. Soc. Jpn., 13, 1528 (1958); https://doi.org/10.1143/JPSJ.13.1528
- R.T. Lagemann and J.E. Corry, J. Chem. Phys., 10, 759 (1942); https://doi.org/10.1063/1.1723659
- Z. Junjie, J. Univ. Sci. Technol. China, 14, 298 (1984).
- N. Santhi, M. Emayavaramban, C. Gopi, C. Manivannan and A. Raguraman, Int. J. Adv. Chem., 2, 34 (2014); https://doi.org/10.14419/ijac.v2i2.1851
- W. Van Dael and E. Vangeel, in Proceedings of the International Conference on Calorimetry and Thermodynamics, Warsaw, Poland, p. 555 (1955).
- R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press: New York (1994).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C.T. Lee, W.T. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
References
A.S. Reddy and M. Satyanarayana, Eur. J. Biomed. Pharm. Sci., 5, 1194 (2018).
D. Chinnarao, C.V. Padmarao, K. Raja, M. Srilatha and B.V. Rao, Int. J. Eng. Res. Tech., 9, 94 (2020).
S. Thirumaran, J.E. Jayakumar and B.H. Dhanasundaram, E-J. Chem., 7, 465 (2010); https://doi.org/10.1155/2010/735216
M.K. Praharaj and A. Satapathy, Indian J. Nat. Sci., 10, 19721 (2020).
A.M. Ghosh and J.N. Ramteke, Der Chemica Sinica, 8, 291 (2017).
A. Shakila, R. Raju, T. Srinivasa Krishna, R. Dey and V. Pandiyan, Phys. Chem. Liq., 58, 263 (2020); https://doi.org/10.1080/00319104.2018.1564752
A. Saini, H. Joshi, K. Kukreja and R. Dey, J. Mol. Liq., 223, 165 (2016); https://doi.org/10.1016/j.molliq.2016.08.046
P. Vasanthara, V. Pandiyan and A.N. Kannappan, J. Asian Appl. Sci., 2, 169 (2009); https://doi.org/10.3923/ajaps.2009.169.176
A.K. Nain, Phys. Chem. Liq., 45, 371 (2007); https://doi.org/10.1080/00319100701230405
W. Zÿ Wirbla, A. Sikorska and B.B.J. Linde, J. Mol. Struct., 743, 49 (2005); https://doi.org/10.1016/j.molstruc.2005.02.019
M. Kondaiah, K. Sreekanth and Sk. Md, J. Chem. Pharm. Res., 6, 1243 (2014).
N. Chakraborty and K.C. Juglan, Eur. J. Mol. Clin. Med., 7, 3580 (2020).
K. Kaur, K.C. Juglan, H. Kumar and V. Sharma, Mater. Today Proc., 21, 1875 (2020); https://doi.org/10.1016/j.matpr.2020.01.244
S. Kothai, Asian J. Chem., 19, 5134 (2007).
N.G. Tsierkezos and M.M. Palaiologou, Phys. Chem. Liq., 47, 447 (2009); https://doi.org/10.1080/00319100802104855
C.E.H. Schmelzer, W. Zÿwirbla, E. Rosenfeld and B.B.J. Linde, J. Mol. Struct., 699, 47 (2004); https://doi.org/10.1016/j.molstruc.2004.04.027
K. Kaur, I. Behal, K.C. Juglan and H. Kumar, J. Chem. Thermodyn., 125, 93 (2018); https://doi.org/10.1016/j.jct.2018.05.016
H.A. Lorentz, The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat, Kessinger Publishing, Whitefish, Flathead, Montana, United States, Ed.: 2, pp. 350 (1916).
O. Weiner, Berichte, 62, 256 (1910).
W. Heller, Phys. Rev., 68, 5 (1945); https://doi.org/10.1103/PhysRev.68.5
D. Dale and F. Gladstone, Philos. Trans., 148, 887 (1958).
K. Narendra, P. Narayanamu and C. Srinivasu, Asian J. Appl. Sci., 4, 535 (2011); https://doi.org/10.3923/ajaps.2011.535.541
S.S. Ubarhande, A.S. Burghate, B.N. Berad and J.D. Turak, Rasayan J. Chem., 4, 585 (2011).
S.O. Isehunwa, E.B. Olanisebe, O.O. Ajiboye and S.A. Akintola, Afr. J. Pure Appl. Chem., 10, 58 (2015); https://doi.org/10.5897/AJPAC2015.0613
R. Mehra, Proc. Indian Acad. Sci. (Chem. Sci.), 115, 147 (2003); https://doi.org/10.1007/BF02716982
A.Z. Tasic, B.D. Djordjevic, D.K. Grozdanic and N. Radojkovic, J. Chem. Eng. Data, 37, 310 (1992); https://doi.org/10.1021/je00007a009
Q.M. Omar, J.-N. Jaubert and J.A. Awan, Int. J. Chem. Eng., 2018, 8689534 (2018); https://doi.org/10.1155/2018/8689534
Ashima, K.C. Juglan and H. Kumar, Results Chem., 2, 100049 (2020); https://doi.org/10.1016/j.rechem.2020.100049
L. Guganathan and S. Kumar, Int. J. Mater. Sci., 12, 89 (2017).
S.K. Ray, J. Rath and C. Dwivedi, Phys. Chem. Liq., 39, 227 (2001); https://doi.org/10.1080/00319100108030341
S.M. Tawfik and F.M. Farag, Egypt. J. Chem., 61, 310 (2018); https://doi.org/10.21608/ejchem.2018.2347.1195
S.D. Deshmukh, K.L. Pattebahadur, P.B. Undre and S.S.P.W. Khirade, Bionano Frontier, 8, 223 (2015).
O. Nomoto, J. Phys. Soc. Jpn., 13, 1528 (1958); https://doi.org/10.1143/JPSJ.13.1528
R.T. Lagemann and J.E. Corry, J. Chem. Phys., 10, 759 (1942); https://doi.org/10.1063/1.1723659
Z. Junjie, J. Univ. Sci. Technol. China, 14, 298 (1984).
N. Santhi, M. Emayavaramban, C. Gopi, C. Manivannan and A. Raguraman, Int. J. Adv. Chem., 2, 34 (2014); https://doi.org/10.14419/ijac.v2i2.1851
W. Van Dael and E. Vangeel, in Proceedings of the International Conference on Calorimetry and Thermodynamics, Warsaw, Poland, p. 555 (1955).
R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press: New York (1994).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C.T. Lee, W.T. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785