Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Electric Voltage on Simultaneous Electrocoagulation-Photocatalysis Process in Removal of Ciprofloxacin-Methylene Blue Mixture and Hydrogen Recovery
Corresponding Author(s) : Slamet
Asian Journal of Chemistry,
Vol. 34 No. 5 (2022): Vol 34 Issue 5, 2022
Abstract
In recent years, the number of health problems and hospital activities have increased with the amount of liquid waste produced. Therefore, this study aims to observe the effectiveness of wastewater treatment of antibiotics ciprofloxacin and methylene blue mixture using electrocoagulation and photocatalysis processes simultaneously. The observation focuses on the effect of the electric voltage used in electrocoagulation, considering the process is simultaneously conducted with photocatalysis. The smaller electrical voltage (20 V) increases the effectiveness of removing ciprofloxacin and methylene blue by 92.5% and 98.5%, respectively. Furthermore, hydrogen yields reached 2.07 mmol/g photocatalyst at 50 V voltage, while 0.98 mmol/g hydrogen gas photocatalyst was obtained when 20 V voltage was used in the process. A simultaneous process was developed by increasing the performance of the photocatalyst in terms of its ability to produce hydrogen. Similarly, the electrocoagulation voltage is sufficiently to maintain the effectiveness of removing dissolved pollutants.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Kraemer, A. Ramachandran and G.G. Perron, Microorganisms, 7, 180 (2019); https://doi.org/10.3390/microorganisms7060180
- H.H. Eker and M.S. Bilgili, Waste Manag. Res., 29, 791 (2011); https://doi.org/10.1177/0734242X10396755
- D. Sharma, R.P. Patel, S.T.R. Zaidi, M.M.R. Sarker, Q.Y. Lean and L.C. Ming, Front. Pharmacol., 8, 546 (2017); https://doi.org/10.3389/fphar.2017.00546
- N. Sabri, S. van Holst, H. Schmitt, B.M. van der Zaan, H.W. Gerritsen, H.H.M. Rijnaarts and A.A.M. Langenhoff, Sci. Total Environ., 741, 140199 (2020); https://doi.org/10.1016/j.scitotenv.2020.140199
- C. Phalakornkule, P. Sukkasem and C. Mutchimsattha, Int. J. Hydrogen Energy, 35, 10934 (2010); https://doi.org/10.1016/j.ijhydene.2010.06.100
- N. Daneshvar, A.R. Khataee, A.R.A. Ghadim and M.H. Rasoulifard, J. Hazard. Mater., 148, 566 (2007); https://doi.org/10.1016/j.jhazmat.2007.03.028
- M. Nakamura, A. Ono, E. Bae, N. Murakami and T. Ohno, Appl. Catal. B, 130-131, 264 (2013); https://doi.org/10.1016/j.apcatb.2012.11.012
- A. Samokhvalov, Renew. Sustain. Energy Rev., 72, 981 (2017); https://doi.org/10.1016/j.rser.2017.01.024
- M.F. Haris, A.M. Didit, M. Ibadurrohman, Setiadi and Slamet, Asian J. Chem., 33, 2038 (2021); https://doi.org/10.14233/ajchem.2021.23255
- L.M. Santos, K.P. de Amorim, L.S. Andrade, P.S. Batista, A.G. Trovó and A.E.H. Machado, J. Braz. Chem. Soc., 26, 1817 (2015); https://doi.org/10.5935/0103-5053.20150158
- H. Ates, N. Dizge and H.C. Yatmaz, Water Sci. Technol., 75, 141 (2017); https://doi.org/10.2166/wst.2016.498
- M. Boroski, A.C. Rodrigues, J.C. Garcia, L.C. Sampaio, J. Nozaki and N. Hioka, J. Hazard. Mater., 162, 448 (2009); https://doi.org/10.1016/j.jhazmat.2008.05.062
- P.R. Gogate and A.B. Pandit, Adv. Environ. Res., 8, 501 (2004); https://doi.org/10.1016/S1093 0191(03)00032-7
- S. Slamet and R. Kurniawan, AIP Conf. Proc., 2024, 020064 (2018); https://doi.org/10.1063/1.5064350
- L.F. Pelawi, S. Slamet and T. Elysabeth, AIP Conf. Proc., 2223, 040001 (2020); https://doi.org/10.1063/5.0000953
- T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed and M. Muneer, Mater. Res. Express, 4, 015022 (2017); https://doi.org/10.1088/2053-1591/aa576d
- V. Kumaravel, M. Imam, A. Badreldin, R. Chava, J. Do, M. Kang and A. Abdel-Wahab, Catalysts, 9, 276 (2019); https://doi.org/10.3390/catal9030276
- C. Acar, I. Dincer and C. Zamfirescu, Int. J. Energy Res., 38, 1903 (2014); https://doi.org/10.1002/er.3211
- E. Ali and Z. Yaakob, Electrocoagulation for Treatment of Industrial Effluents and Hydrogen Production, In: Electrolysis, IntechOpen, p. 16 (2012).
- R. Dholam, N. Patel, M. Adami and A. Miotello, Int. J. Hydrogen Energy, 34, 5337 (2009); https://doi.org/10.1016/j.ijhydene.2009.05.011
- P. Canizares, M. Carmona, J. Lobato, F. Martínez and M.A. Rodrigo, Ind. Eng. Chem. Res., 44, 4178 (2005); https://doi.org/10.1021/ie048858a
- M. Saravanan, N.P. Sambhamurthy and M. Sivarajan, Clean, 38, 565 (2010); https://doi.org/10.1002/clen.200900278
- C.E. Barrera-Díaz, V. Lugo-Lugo and B. Bilyeu, J. Hazard. Mater., 223- 224, 1 (2012); https://doi.org/10.1016/j.jhazmat.2012.04.054
References
S.A. Kraemer, A. Ramachandran and G.G. Perron, Microorganisms, 7, 180 (2019); https://doi.org/10.3390/microorganisms7060180
H.H. Eker and M.S. Bilgili, Waste Manag. Res., 29, 791 (2011); https://doi.org/10.1177/0734242X10396755
D. Sharma, R.P. Patel, S.T.R. Zaidi, M.M.R. Sarker, Q.Y. Lean and L.C. Ming, Front. Pharmacol., 8, 546 (2017); https://doi.org/10.3389/fphar.2017.00546
N. Sabri, S. van Holst, H. Schmitt, B.M. van der Zaan, H.W. Gerritsen, H.H.M. Rijnaarts and A.A.M. Langenhoff, Sci. Total Environ., 741, 140199 (2020); https://doi.org/10.1016/j.scitotenv.2020.140199
C. Phalakornkule, P. Sukkasem and C. Mutchimsattha, Int. J. Hydrogen Energy, 35, 10934 (2010); https://doi.org/10.1016/j.ijhydene.2010.06.100
N. Daneshvar, A.R. Khataee, A.R.A. Ghadim and M.H. Rasoulifard, J. Hazard. Mater., 148, 566 (2007); https://doi.org/10.1016/j.jhazmat.2007.03.028
M. Nakamura, A. Ono, E. Bae, N. Murakami and T. Ohno, Appl. Catal. B, 130-131, 264 (2013); https://doi.org/10.1016/j.apcatb.2012.11.012
A. Samokhvalov, Renew. Sustain. Energy Rev., 72, 981 (2017); https://doi.org/10.1016/j.rser.2017.01.024
M.F. Haris, A.M. Didit, M. Ibadurrohman, Setiadi and Slamet, Asian J. Chem., 33, 2038 (2021); https://doi.org/10.14233/ajchem.2021.23255
L.M. Santos, K.P. de Amorim, L.S. Andrade, P.S. Batista, A.G. Trovó and A.E.H. Machado, J. Braz. Chem. Soc., 26, 1817 (2015); https://doi.org/10.5935/0103-5053.20150158
H. Ates, N. Dizge and H.C. Yatmaz, Water Sci. Technol., 75, 141 (2017); https://doi.org/10.2166/wst.2016.498
M. Boroski, A.C. Rodrigues, J.C. Garcia, L.C. Sampaio, J. Nozaki and N. Hioka, J. Hazard. Mater., 162, 448 (2009); https://doi.org/10.1016/j.jhazmat.2008.05.062
P.R. Gogate and A.B. Pandit, Adv. Environ. Res., 8, 501 (2004); https://doi.org/10.1016/S1093 0191(03)00032-7
S. Slamet and R. Kurniawan, AIP Conf. Proc., 2024, 020064 (2018); https://doi.org/10.1063/1.5064350
L.F. Pelawi, S. Slamet and T. Elysabeth, AIP Conf. Proc., 2223, 040001 (2020); https://doi.org/10.1063/5.0000953
T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed and M. Muneer, Mater. Res. Express, 4, 015022 (2017); https://doi.org/10.1088/2053-1591/aa576d
V. Kumaravel, M. Imam, A. Badreldin, R. Chava, J. Do, M. Kang and A. Abdel-Wahab, Catalysts, 9, 276 (2019); https://doi.org/10.3390/catal9030276
C. Acar, I. Dincer and C. Zamfirescu, Int. J. Energy Res., 38, 1903 (2014); https://doi.org/10.1002/er.3211
E. Ali and Z. Yaakob, Electrocoagulation for Treatment of Industrial Effluents and Hydrogen Production, In: Electrolysis, IntechOpen, p. 16 (2012).
R. Dholam, N. Patel, M. Adami and A. Miotello, Int. J. Hydrogen Energy, 34, 5337 (2009); https://doi.org/10.1016/j.ijhydene.2009.05.011
P. Canizares, M. Carmona, J. Lobato, F. Martínez and M.A. Rodrigo, Ind. Eng. Chem. Res., 44, 4178 (2005); https://doi.org/10.1021/ie048858a
M. Saravanan, N.P. Sambhamurthy and M. Sivarajan, Clean, 38, 565 (2010); https://doi.org/10.1002/clen.200900278
C.E. Barrera-Díaz, V. Lugo-Lugo and B. Bilyeu, J. Hazard. Mater., 223- 224, 1 (2012); https://doi.org/10.1016/j.jhazmat.2012.04.054