Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Assisted Synthesis of Benzoxazole-Triazole Hybrid Derivatives as Antimicrobial Agents
Corresponding Author(s) : B. Yadagiri
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
A series of new 1,3-benzoxazole based 1,2,3-triazoles compounds were synthesized using click reaction under conventional and microwave irradiation methods. The microwave irradiation method gave higher yields, shorter reaction time as compared to conventional method using green solvents, eco-friendly reaction conditions. All the targeted compounds were characterized by IR, 1H, 13C NMR and mass spectral analysis. Furthermore, the titled compounds were screened for their in vitro antimicrobial activity against bacterial strains such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae and Escherichia coli as well as fungi such as Aspergillus niger, Aspergillus flavus and Fusarium oxysporum. Most of the compounds displayed good to excellent antimicrobial activity in comparison to standard drugs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.K. Wong and K.Y. Yeong, ChemMedChem, 16, 3237 (2021); https://doi.org/10.1002/cmdc.202100370
- O. Temiz-Arpaci, E. Aki-Sener, I. Yalcin and N. Altanlar, Arch. Pharm. Pharm. Med. Chem., 335, 283 (2002); https://doi.org/10.1002/1521-4184(200208)335:6<283::AID-ARDP283>3.0.CO;2-M
- B. Tekiner-Gulbas, O. Temiz-Arpaci, I. Yildiz and N. Altanlar, Eur. J. Med. Chem., 42, 1293 (2007); https://doi.org/10.1016/j.ejmech.2007.01.022
- J. Vinsova, K. Cermakova, A. Tomeckova, M. Ceckova, J. Jampilek, P. Cermak, J. Kunes, M. Dolezal and F. Staud, Bioorg. Med. Chem., 14, 5850 (2006); https://doi.org/10.1016/j.bmc.2006.05.030
- R.N. Brown, R. Cameron, D.K. Chalmers, S. Hamilton, A. Luttick, G.Y. Krippner, D.B. McConnell, R. Nearn, P.C. Stanislawski, S.P. Tucker and K.G. Watson, Bioorg. Med. Chem. Lett., 15, 2051 (2005); https://doi.org/10.1016/j.bmcl.2005.02.054
- S.T. Huang, I.J. Hsei and C. Chen, Bioorg. Med. Chem., 14, 6106 (2006); https://doi.org/10.1016/j.bmc.2006.05.007
- M.L. McKee and S.M. Kerwin, Bioorg. Med. Chem., 16, 1775 (2008); https://doi.org/10.1016/j.bmc.2007.11.019
- K. Dileep and M.S.R. Murty, Synlett, 28, 2295 (2017); https://doi.org/10.1055/s-0036-1590972
- D. Kumar, M.R. Jacob, M.B. Reynolds and S.M. Kerwin, Bioorg. Med. Chem., 10, 3997 (2002); https://doi.org/10.1016/S0968-0896(02)00327-9
- E. Oksuzoglu, B. Tekiner-Gulbas, S. Alper, O. Temiz-Arpaci, T. Ertan, I. Yildiz, N. Diril, E. Sener-Aki and I. Yalcin, J. Enzyme Inhib. Med. Chem., 23, 37 (2008); https://doi.org/10.1080/14756360701342516
- M.G. Holler, L.F. Campo, A. Brandelli and V. Stefani, J. Photochem. Photobiol. Chem., 149, 217 (2002); https://doi.org/10.1016/S1010-6030(02)00008-4
- S. Sato, T. Kajiura, M. Noguchi, K. Takehana, T. Kobayashi and T. Tsuji, J. Antibiot. (Tokyo), 54, 102 (2001); https://doi.org/10.7164/antibiotics.54.102
- S.J. Yan, Y.J. Liu, Y.L. Chen, L. Liu and J. Lin, Bioorg. Med. Chem. Lett., 20, 5225 (2010); https://doi.org/10.1016/j.bmcl.2010.06.141
- K. Odlo, J.J. Hentzen, J.F. dit Chabert, S. Ducki, O.A.B.S.M. Gani, I. Sylte, M. Skrede, V.A. Flørenes and T.V. Hansen, Bioorg. Med. Chem., 16, 4829 (2008); https://doi.org/10.1016/j.bmc.2008.03.049
- F.C. da Silva, M.C.B.V. de Souza, I.I.P. Frugulhetti, H.C. Castro, S.L.O. Souza, T.M.L. de Souza, D.Q. Rodrigues, A.M.T. Souza, P.A. Abreu and F. Passamani, Eur. J. Med. Chem., 44, 373 (2009); https://doi.org/10.1016/j.ejmech.2008.02.047
- R. De Simone, M.G. Chini, I. Bruno, R. Riccio, D. Mueller, O. Werz and G. Bifulco, J. Med. Chem., 54, 1565 (2011); https://doi.org/10.1021/jm101238d
- R. Périon, V. Ferrières, M.I. García-Moreno, C. Ortiz-Mellet, R. Duval, J.M. García-Fernández and D. Plusquellec, Tetrahedron, 61, 9118 (2005); https://doi.org/10.1016/j.tet.2005.07.033
- M. Meldal and C.W. Tornøe, Chem. Rev., 108, 2952 (2008); https://doi.org/10.1021/cr0783479
- M.J. Giffin, H. Heaslet, A. Brik, Y.-C. Lin, G. Cauvi, C.-H. Wong, D.E. McRee, J.H. Elder, C.D. Stout and B.E. Torbett, J. Med. Chem., 51, 6263 (2008); https://doi.org/10.1021/jm800149m
- B. Ravinaik, D. Ramachandran and M.V.B. Rao, Russ. J. Gen. Chem., 89, 1003 (2019); https://doi.org/10.1134/S1070363219050219
- Z.X. Wang and H.L. Qin, Chem. Commun., 2450 (2003); https://doi.org/10.1039/b307084k
References
X.K. Wong and K.Y. Yeong, ChemMedChem, 16, 3237 (2021); https://doi.org/10.1002/cmdc.202100370
O. Temiz-Arpaci, E. Aki-Sener, I. Yalcin and N. Altanlar, Arch. Pharm. Pharm. Med. Chem., 335, 283 (2002); https://doi.org/10.1002/1521-4184(200208)335:6<283::AID-ARDP283>3.0.CO;2-M
B. Tekiner-Gulbas, O. Temiz-Arpaci, I. Yildiz and N. Altanlar, Eur. J. Med. Chem., 42, 1293 (2007); https://doi.org/10.1016/j.ejmech.2007.01.022
J. Vinsova, K. Cermakova, A. Tomeckova, M. Ceckova, J. Jampilek, P. Cermak, J. Kunes, M. Dolezal and F. Staud, Bioorg. Med. Chem., 14, 5850 (2006); https://doi.org/10.1016/j.bmc.2006.05.030
R.N. Brown, R. Cameron, D.K. Chalmers, S. Hamilton, A. Luttick, G.Y. Krippner, D.B. McConnell, R. Nearn, P.C. Stanislawski, S.P. Tucker and K.G. Watson, Bioorg. Med. Chem. Lett., 15, 2051 (2005); https://doi.org/10.1016/j.bmcl.2005.02.054
S.T. Huang, I.J. Hsei and C. Chen, Bioorg. Med. Chem., 14, 6106 (2006); https://doi.org/10.1016/j.bmc.2006.05.007
M.L. McKee and S.M. Kerwin, Bioorg. Med. Chem., 16, 1775 (2008); https://doi.org/10.1016/j.bmc.2007.11.019
K. Dileep and M.S.R. Murty, Synlett, 28, 2295 (2017); https://doi.org/10.1055/s-0036-1590972
D. Kumar, M.R. Jacob, M.B. Reynolds and S.M. Kerwin, Bioorg. Med. Chem., 10, 3997 (2002); https://doi.org/10.1016/S0968-0896(02)00327-9
E. Oksuzoglu, B. Tekiner-Gulbas, S. Alper, O. Temiz-Arpaci, T. Ertan, I. Yildiz, N. Diril, E. Sener-Aki and I. Yalcin, J. Enzyme Inhib. Med. Chem., 23, 37 (2008); https://doi.org/10.1080/14756360701342516
M.G. Holler, L.F. Campo, A. Brandelli and V. Stefani, J. Photochem. Photobiol. Chem., 149, 217 (2002); https://doi.org/10.1016/S1010-6030(02)00008-4
S. Sato, T. Kajiura, M. Noguchi, K. Takehana, T. Kobayashi and T. Tsuji, J. Antibiot. (Tokyo), 54, 102 (2001); https://doi.org/10.7164/antibiotics.54.102
S.J. Yan, Y.J. Liu, Y.L. Chen, L. Liu and J. Lin, Bioorg. Med. Chem. Lett., 20, 5225 (2010); https://doi.org/10.1016/j.bmcl.2010.06.141
K. Odlo, J.J. Hentzen, J.F. dit Chabert, S. Ducki, O.A.B.S.M. Gani, I. Sylte, M. Skrede, V.A. Flørenes and T.V. Hansen, Bioorg. Med. Chem., 16, 4829 (2008); https://doi.org/10.1016/j.bmc.2008.03.049
F.C. da Silva, M.C.B.V. de Souza, I.I.P. Frugulhetti, H.C. Castro, S.L.O. Souza, T.M.L. de Souza, D.Q. Rodrigues, A.M.T. Souza, P.A. Abreu and F. Passamani, Eur. J. Med. Chem., 44, 373 (2009); https://doi.org/10.1016/j.ejmech.2008.02.047
R. De Simone, M.G. Chini, I. Bruno, R. Riccio, D. Mueller, O. Werz and G. Bifulco, J. Med. Chem., 54, 1565 (2011); https://doi.org/10.1021/jm101238d
R. Périon, V. Ferrières, M.I. García-Moreno, C. Ortiz-Mellet, R. Duval, J.M. García-Fernández and D. Plusquellec, Tetrahedron, 61, 9118 (2005); https://doi.org/10.1016/j.tet.2005.07.033
M. Meldal and C.W. Tornøe, Chem. Rev., 108, 2952 (2008); https://doi.org/10.1021/cr0783479
M.J. Giffin, H. Heaslet, A. Brik, Y.-C. Lin, G. Cauvi, C.-H. Wong, D.E. McRee, J.H. Elder, C.D. Stout and B.E. Torbett, J. Med. Chem., 51, 6263 (2008); https://doi.org/10.1021/jm800149m
B. Ravinaik, D. Ramachandran and M.V.B. Rao, Russ. J. Gen. Chem., 89, 1003 (2019); https://doi.org/10.1134/S1070363219050219
Z.X. Wang and H.L. Qin, Chem. Commun., 2450 (2003); https://doi.org/10.1039/b307084k