Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Exfoliation of MoS2-RGO Hybrid 2D Sheets by Supercritical Fluid Process
Corresponding Author(s) : Dinesh Rangappa
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
Layered 2D transition metal dichalcogenides (TMD’s) have been considered as an important class of materials in the field of energy and environmental applications. Therefore, it is desirable to fabricate 2D hybrid TMD’s materials in simple solution processing methods. In this study, MoS2-RGO hybrid 2D few layered sheets are produced by supercritical fluid process (SCF) by using ethanol as solvent at 250 ºC in a short duration of 0.5 h. Atomic force microscopy (AFM), transmission electron microscope (TEM) and scanning electron microscope (SEM) images confirmed the formation of 2D hybrid few layered sheets. The electrochemical impedance measurement indicates fivefold increase in conductivity of bulk MoS2. This work presents rapid and one pot exfoliation of MoS2 and simultaneous reduction of GO that can facilitate the production of 2D hybrid materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh and H. Zhang, Nat. Chem., 5, 263 (2013); https://doi.org/10.1038/nchem.1589
- A.K. Geim and I.V. Grigorieva, Nature, 499, 419 (2013); https://doi.org/10.1038/nature12385
- D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks and M.C. Hersam, ACS Nano, 8, 1102 (2014); https://doi.org/10.1021/nn500064s
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman and M.S. Strano, Nat. Nanotechnol., 7, 699 (2012); https://doi.org/10.1038/nnano.2012.193
- H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, Q. Zhang and H. Zhang, Small, 8, 63 (2012); https://doi.org/10.1002/smll.201101016
- L. Cao, Y. Yu, S. Huang and W. Yang, Layer-dependent Electrocatalysis of MoS2 for Hydrogen Evolution Layer-Dependent Electrocatalysis of MoS2 for Hydrogen Evolution, Department of Materials Science and Engineering, North Carolina State University, Raleigh NC (2014).
- S. Bertolazzi, J. Brivio and A. Kis, ACS Nano, 5, 9703 (2011); https://doi.org/10.1021/nn203879f
- K.F. Mak, C. Lee, J. Hone, J. Shan and T.F. Heinz, Phys. Rev. Lett., 105, 136805 (2010); https://doi.org/10.1103/PhysRevLett.105.136805
- C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone and S. Ryu, ACS Nano, 4, 2695 (2010); https://doi.org/10.1021/nn1003937
- L. Wei, Y. Chen, Y. Lin, H. Wu, R. Yuan and Z. Li, Appl. Catal. B, 144, 521 (2014); https://doi.org/10.1016/j.apcatb.2013.07.064
- A. Sobczynski, J. Catal., 131, 156 (1991); https://doi.org/10.1016/0021-9517(91)90332-X
- H. Wang, H. Feng and J. Li, Small, 10, 2165 (2014); https://doi.org/10.1002/smll.201303711
- X. Wang, Z. Zhang, Y. Chen, Y. Qu, Y. Lai and J. Li, J. Alloys Compd., 600, 84 (2014); https://doi.org/10.1016/j.jallcom.2014.02.127
- H.Y. Chang, S. Yang, J. Lee, L. Tao, W.S. Hwang, D. Jena, N. Lu and D. Akinwande, ACS Nano, 7, 5446 (2013); https://doi.org/10.1021/nn401429w
- Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang and H. Zhang, Small, 8, 2994 (2012); https://doi.org/10.1002/smll.201201224
- M. Latorre-Sánchez, I. Esteve-Adell, A. Primo and H. García, Carbon, 81, 587 (2015); https://doi.org/10.1016/j.carbon.2014.09.093
- W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson and J.-C. Idrobo, Nano Lett., 13, 2615 (2013); https://doi.org/10.1021/nl4007479
- A.M. Van Der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller and J.C. Hone, Nat. Mater., 12, 554 (2013); https://doi.org/10.1038/nmat3633
- J.D. Tobias, Anesthesiology, 96, 1522 (2002); https://doi.org/10.1097/00000542-200206000-00039
- H. Li, J. Wu, Z. Yin and H. Zhang, Acc. Chem. Res., 47, 1067 (2014); https://doi.org/10.1021/ar4002312
- O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, Nat. Nanotechnol., 8, 497 (2013); https://doi.org/10.1038/nnano.2013.100
- A. Winchester, S. Ghosh, S. Feng, A.L. Elias, T. Mallouk, M. Terrones and S. Talapatra, ACS Appl. Mater. Interfaces, 6, 2125 (2014); https://doi.org/10.1021/am4051316
- Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey and H. Zhang, Angew. Chem. Int. Ed., 50, 11093 (2011); https://doi.org/10.1002/anie.201106004
- G.S. Bang, K.W. Nam, J.Y. Kim, J. Shin, J.W. Choi and S. Choi, ACS Appl. Mater. Interfaces, 6, 7084 (2014); https://doi.org/10.1021/am4060222
- J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist and V. Nicolosi, Science, 331, 568 (2011); https://doi.org/10.1126/science.1194975
- K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi and J.N. Coleman, Nat. Mater., 13, 624 (2014); https://doi.org/10.1038/nmat3944
- A. Shmeliov, M. Shannon, P. Wang, J.S. Kim, E. Okunishi, P.D. Nellist, K. Dolui, S. Sanvito and V. Nicolosi, ACS Nano, 8, 3690 (2014); https://doi.org/10.1021/nn5003387
- D. Rangappa, K. Sone, M. Wang, U.K. Gautam, D. Golberg, H. Itoh, M. Ichihara and I. Honma, Chem. Eur. J., 16, 6488 (2010); https://doi.org/10.1002/chem.201000199
- Q.D. Truong, M. Kempaiah Devaraju, Y. Nakayasu, N. Tamura, Y. Sasaki, T. Tomai and I. Honma, ACS Omega, 2, 2360 (2017); https://doi.org/10.1021/acsomega.7b00379
- P. Thangasamy and M. Sathish, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 1165 (2016); https://doi.org/10.1039/C5TC03630E
- K. Chang and W. Chen, Chem. Commun., 47, 4252 (2011); https://doi.org/10.1039/c1cc10631g
- M.N. Rani, M. Murthy, N.S. Shree, S. Ananda, S. Yogesh and R. Dinesh, Ceram. Int., 45, 25020 (2019); https://doi.org/10.1016/j.ceramint.2019.04.195
- Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan and J. Lou, Small, 8, 966 (2012); https://doi.org/10.1002/smll.201102654
References
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh and H. Zhang, Nat. Chem., 5, 263 (2013); https://doi.org/10.1038/nchem.1589
A.K. Geim and I.V. Grigorieva, Nature, 499, 419 (2013); https://doi.org/10.1038/nature12385
D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks and M.C. Hersam, ACS Nano, 8, 1102 (2014); https://doi.org/10.1021/nn500064s
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman and M.S. Strano, Nat. Nanotechnol., 7, 699 (2012); https://doi.org/10.1038/nnano.2012.193
H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, Q. Zhang and H. Zhang, Small, 8, 63 (2012); https://doi.org/10.1002/smll.201101016
L. Cao, Y. Yu, S. Huang and W. Yang, Layer-dependent Electrocatalysis of MoS2 for Hydrogen Evolution Layer-Dependent Electrocatalysis of MoS2 for Hydrogen Evolution, Department of Materials Science and Engineering, North Carolina State University, Raleigh NC (2014).
S. Bertolazzi, J. Brivio and A. Kis, ACS Nano, 5, 9703 (2011); https://doi.org/10.1021/nn203879f
K.F. Mak, C. Lee, J. Hone, J. Shan and T.F. Heinz, Phys. Rev. Lett., 105, 136805 (2010); https://doi.org/10.1103/PhysRevLett.105.136805
C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone and S. Ryu, ACS Nano, 4, 2695 (2010); https://doi.org/10.1021/nn1003937
L. Wei, Y. Chen, Y. Lin, H. Wu, R. Yuan and Z. Li, Appl. Catal. B, 144, 521 (2014); https://doi.org/10.1016/j.apcatb.2013.07.064
A. Sobczynski, J. Catal., 131, 156 (1991); https://doi.org/10.1016/0021-9517(91)90332-X
H. Wang, H. Feng and J. Li, Small, 10, 2165 (2014); https://doi.org/10.1002/smll.201303711
X. Wang, Z. Zhang, Y. Chen, Y. Qu, Y. Lai and J. Li, J. Alloys Compd., 600, 84 (2014); https://doi.org/10.1016/j.jallcom.2014.02.127
H.Y. Chang, S. Yang, J. Lee, L. Tao, W.S. Hwang, D. Jena, N. Lu and D. Akinwande, ACS Nano, 7, 5446 (2013); https://doi.org/10.1021/nn401429w
Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang and H. Zhang, Small, 8, 2994 (2012); https://doi.org/10.1002/smll.201201224
M. Latorre-Sánchez, I. Esteve-Adell, A. Primo and H. García, Carbon, 81, 587 (2015); https://doi.org/10.1016/j.carbon.2014.09.093
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson and J.-C. Idrobo, Nano Lett., 13, 2615 (2013); https://doi.org/10.1021/nl4007479
A.M. Van Der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller and J.C. Hone, Nat. Mater., 12, 554 (2013); https://doi.org/10.1038/nmat3633
J.D. Tobias, Anesthesiology, 96, 1522 (2002); https://doi.org/10.1097/00000542-200206000-00039
H. Li, J. Wu, Z. Yin and H. Zhang, Acc. Chem. Res., 47, 1067 (2014); https://doi.org/10.1021/ar4002312
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, Nat. Nanotechnol., 8, 497 (2013); https://doi.org/10.1038/nnano.2013.100
A. Winchester, S. Ghosh, S. Feng, A.L. Elias, T. Mallouk, M. Terrones and S. Talapatra, ACS Appl. Mater. Interfaces, 6, 2125 (2014); https://doi.org/10.1021/am4051316
Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey and H. Zhang, Angew. Chem. Int. Ed., 50, 11093 (2011); https://doi.org/10.1002/anie.201106004
G.S. Bang, K.W. Nam, J.Y. Kim, J. Shin, J.W. Choi and S. Choi, ACS Appl. Mater. Interfaces, 6, 7084 (2014); https://doi.org/10.1021/am4060222
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist and V. Nicolosi, Science, 331, 568 (2011); https://doi.org/10.1126/science.1194975
K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi and J.N. Coleman, Nat. Mater., 13, 624 (2014); https://doi.org/10.1038/nmat3944
A. Shmeliov, M. Shannon, P. Wang, J.S. Kim, E. Okunishi, P.D. Nellist, K. Dolui, S. Sanvito and V. Nicolosi, ACS Nano, 8, 3690 (2014); https://doi.org/10.1021/nn5003387
D. Rangappa, K. Sone, M. Wang, U.K. Gautam, D. Golberg, H. Itoh, M. Ichihara and I. Honma, Chem. Eur. J., 16, 6488 (2010); https://doi.org/10.1002/chem.201000199
Q.D. Truong, M. Kempaiah Devaraju, Y. Nakayasu, N. Tamura, Y. Sasaki, T. Tomai and I. Honma, ACS Omega, 2, 2360 (2017); https://doi.org/10.1021/acsomega.7b00379
P. Thangasamy and M. Sathish, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 1165 (2016); https://doi.org/10.1039/C5TC03630E
K. Chang and W. Chen, Chem. Commun., 47, 4252 (2011); https://doi.org/10.1039/c1cc10631g
M.N. Rani, M. Murthy, N.S. Shree, S. Ananda, S. Yogesh and R. Dinesh, Ceram. Int., 45, 25020 (2019); https://doi.org/10.1016/j.ceramint.2019.04.195
Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan and J. Lou, Small, 8, 966 (2012); https://doi.org/10.1002/smll.201102654