Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
One-Pot Super Critical Fluid Synthesis of Spinel MnFe2O4 Nanoparticles and its Application as Anode Material for Mg-ion Battery
Corresponding Author(s) : Prasanna D. Shivaramu
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
In present study, the synthesis of spinel MnFe2O4 nanoparticles using a facile one-pot super critical fluid method and their application for Mg-ion battery application as anode materials is reported. The synthesized MnFe2O4 nanoparticles were well characterized for their structure and morphology using XRD, SEM, TEM and EDS analysis. The average particle size of materials was less than 50 nm with spinel structure. The main feature of magnesium ion battery is its high specific capacity and large volumetric energy density, which makes it a promising alternative to Li-ion batteries. The spinel MnFe2O4 material has been used as an anode material for Mg-ion batteries. At different C-rates (0.05C to 2C), electrochemical charge-discharge behaviour has been observed. In first cycle of the phase-pure spinel structured anode, an initial specific capacity of 195.82 mAh/g, 139.70 mAh/g, 25.04 mAh/g and 14.16 mAh/g were obtained at C rate of 0.05C, 0.1C, 1C and 2C, respectively. A possible phase conversion reaction of the anode resulted in a decrease in specific capacity with increasing C-rate.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, N. Zhang, C. Yu, L. Jiao and J. Chen, Nano Lett., 16, 3321 (2016); https://doi.org/10.1021/acs.nanolett.6b00942
- Q.D. Truong, M. Kempaiah Devaraju, P.D. Tran, Y. Gambe, K. Nayuki, Y. Sasaki and I. Honma, Chem. Mater., 29, 6245 (2017); https://doi.org/10.1021/acs.chemmater.7b01252
- M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang and H. Dai, Nature, 520, 324 (2015); https://doi.org/10.1038/nature14340
- A. Ponrouch, C. Frontera, F. Bardé and M.R. Palacín, Nat. Mater., 15, 169 (2016); https://doi.org/10.1038/nmat4462
- J. Muldoon, C.B. Bucur and T. Gregory, Chem. Rev., 114, 11683 (2014); https://doi.org/10.1021/cr500049y
- S. Tepavcevic, Y. Liu, D. Zhou, B. Lai, J. Maser, X. Zuo, H. Chan, P. Král, C.S. Johnson, V. Stamenkovic, N.M. Markovic and T. Rajh, ACS Nano, 9, 8194 (2015); https://doi.org/10.1021/acsnano.5b02450
- D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich and E. Levi, Nature, 407, 724 (2000); https://doi.org/10.1038/35037553
- L.F. Wan and D. Prendergast, J. Am. Chem. Soc., 136, 14456 (2014); https://doi.org/10.1021/ja505967u
- T.J. Carter, R. Mohtadi, T.S. Arthur, F. Mizuno, R. Zhang, S. Shirai and J.W. Kampf, Angew. Chem. Int. Ed., 53, 3173 (2014); https://doi.org/10.1002/anie.201310317
- P. Novák, R. Imhof and O. Haas, Electrochim. Acta, 45, 351 (1999); https://doi.org/10.1016/S0013 4686(99)00216-9
- J. Muldoon, C.B. Bucur, A.G. Oliver, T. Sugimoto, M. Matsui, H.S. Kim, G.D. Allred, J. Zajicek and Y. Kotani, Energy Environ. Sci., 5, 5941 (2012); https://doi.org/10.1039/c2ee03029b
- E. Levi, Y. Gofer and D. Aurbach, Chem. Mater., 22, 860 (2010); https://doi.org/10.1021/cm9016497
- Z. Lu, A. Schechter, M. Moshkovich and D. Aurbach, J. Electroanal. Chem., 466, 203 (1999); https://doi.org/10.1016/S0022-0728(99)00146-1
- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.-M. Tarascon, Nature, 407, 496 (2000); https://doi.org/10.1038/35035045
- Y. Pan, Y. Zhang, X. Wei, C. Yuan, J. Yin, D. Cao and G. Wang, Electrochim. Acta, 109, 89 (2013); https://doi.org/10.1016/j.electacta.2013.07.026
- N. Sivakumar, S.R.P. Gnanakan, K. Karthikeyan, S. Amaresh, W.S. Yoon, G.J. Park and Y.S. Lee, J. Alloys Compd., 509, 7038 (2011); https://doi.org/10.1016/j.jallcom.2011.03.123
- D.C. Bock, K.R. Tallman, H. Guo, C. Quilty, S. Yan, P.F. Smith, B. Zhang, D.M. Lutz, A.H. McCarthy, M.M. Huie, V. Burnett, A.M. Bruck, A.C. Marschilok, E.S. Takeuchi, P. Liu and K.J. Takeuchi, Phys. Chem.
- Chem. Phys., 22, 26200 (2020); https://doi.org/10.1039/D0CP02322A
- C. Kim, P.J. Phillips, B. Key, T. Yi, D. Nordlund, Y.-S. Yu, R.D. Bayliss, S.-D. Han, M. He, Z. Zhang, A.K. Burrell, R.F. Klie and J. Cabana, Adv. Mater., 27, 3377 (2015); https://doi.org/10.1002/adma.201500083
- M. Liu, Z. Rong, R. Malik, P. Canepa, A. Jain, G. Ceder and K.A. Persson, Energy Environ. Sci., 8, 964 (2015); https://doi.org/10.1039/C4EE03389B
- Z. Feng, X. Chen, L. Qiao, A.L. Lipson, T.T. Fister, L. Zeng, C. Kim, T. Yi, N. Sa, D.L. Proffit, A.K. Burrell, J. Cabana, B.J. Ingram, M.D. Biegalski, M.J. Bedzyk and P. Fenter, ACS Appl. Mater. Interfaces, 7, 28438 (2015); https://doi.org/10.1021/acsami.5b09346
- H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour and D. Aurbach, Energy Environ. Sci., 6, 2265 (2013); https://doi.org/10.1039/c3ee40871j
- M. Mao, T. Gao, S. Hou and C. Wang, Chem. Soc. Rev., 47, 8804 (2018); https://doi.org/10.1039/C8CS00319J
- S. Okamoto, T. Ichitsubo, T. Kawaguchi, Y. Kumagai, F. Oba, S. Yagi, K. Shimokawa, N. Goto, T. Doi and E. Matsubara, Adv. Sci., 8, 1500072 (2015); https://doi.org/10.1002/advs.201500072
- R. Yokozaki, H. Kobayashi and I. Honma, Ceram. Int., 47, 10236 (2021); https://doi.org/10.1016/j.ceramint.2020.10.184
- M.M. Thackeray, W.I.F. David, P.G. Bruce and J.B. Goodenough, Mater. Res. Bull., 18, 461 (1983); https://doi.org/10.1016/0025-5408(83)90138-1
- M.M. Thackeray, Prog. Solid State Chem., 25, 1 (1997); https://doi.org/10.1016/S0079-6786(97)81003 5
- K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita, J. Electrochem. Soc., 143, 1607 (1996); https://doi.org/10.1149/1.1836686
- Y. Terada, K. Yasaka, F. Nishikawa, T. Konishi, M. Yoshio and I. Nakai, J. Solid State Chem., 156, 286 (2001); https://doi.org/10.1006/jssc.2000.8990
- D. Liu, Y. Lu and J.B. Goodenough, J. Electrochem. Soc., 157, A1269 (2010); https://doi.org/10.1149/1.3491365
- H. Kawai, M. Nagata, H. Kageyama, H. Tukamoto and A.R. West, Electrochim. Acta, 45, 315 (1999); https://doi.org/10.1016/S0013-4686(99)00213-3
- Q.D. Truong, H. Kobayashi, K. Nayuki, Y. Sasaki and I. Honma, Solid State Ion., 344, 115136 (2020); https://doi.org/10.1016/j.ssi.2019.115136
- Q.D. Truong, H. Kobayashi and I. Honma, RSC Adv., 9, 36717 (2019); https://doi.org/10.1039/C9RA04936C
- T.S. Arthur, R. Zhang, C. Ling, P.-A. Glans, X. Fan, J. Guo and F. Mizuno, ACS Appl. Mater. Interfaces, 6, 7004 (2014); https://doi.org/10.1021/am5015327
- M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou and I. Honma, J. Am. Chem. Soc., 129, 7444 (2007); https://doi.org/10.1021/ja0681927
- M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo and I. Honma, ACS Nano, 4, 741 (2010); https://doi.org/10.1021/nn9012065
- M. Fracchia, M. Manzoli, U. Anselmi-Tamburini and P. Ghigna, Scr. Mater., 188, 26 (2020); https://doi.org/10.1016/j.scriptamat.2020.07.002
- V.S. Zhandun and A.V. Nemtsev, Mater. Chem. Phys., 259, 124065 (2021); https://doi.org/10.1016/j.matchemphys.2020.124065
- A. Sankaramahalingam and J.B. Lawrence, Nano-Metal Chem., 42, 121 (2012); https://doi.org/10.1080/15533174.2011.609500
- W.B. Cross, L. Affleck, M.V. Kuznetsov, I.P. Parkin and Q.A. Pankhurst, J. Mater. Chem., 9, 2545 (1999); https://doi.org/10.1039/a904431k
- M.A. Ahmed, E. Ateia and F.M. Salem, J. Mater. Sci., 42, 3651 (2007); https://doi.org/10.1007/s10853 006-1349-0
- F.A. Radwan, M.A. Ahmed and G. Abdelatif, J. Phys. Chem. Solids, 64, 2465 (2003); https://doi.org/10.1016/j.jpcs.2003.08.003
- K. Shimokawa and T. Ichitsubo, Curr. Opin. Electrochem., 21, 93 (2020); https://doi.org/10.1016/j.coelec.2020.01.017
- N. Kitamura, Y. Tanabe, N. Ishida and Y. Idemoto, Chem. Commun., 55, 2517 (2019); https://doi.org/10.1039/C8CC09713E
- K. Shimokawa, H. Matsumoto and T. Ichitsubo, J. Phys. Chem. Lett., 9, 4732 (2018); https://doi.org/10.1021/acs.jpclett.8b02209
- Y. Kotani, R. Ise, K. Ishii, T. Mandai, Y. Oaki, S. Yagi and H. Imai, J. Alloys Compd., 739, 793 (2018); https://doi.org/10.1016/j.jallcom.2017.12.315
- T. Ichitsubo, S. Okamoto, T. Kawaguchi, Y. Kumagai, F. Oba, S. Yagi, N. Goto, T. Doi and E. Matsubara, J. Mater. Chem. A Mater. Energy Sustain., 3, 10188 (2015); https://doi.org/10.1039/C5TA01365H
- T. Ichitsubo, T. Adachi, S. Yagi and T. Doi, J. Mater. Chem., 21, 11764 (2011); https://doi.org/10.1039/c1jm11793a
References
Y. Liu, N. Zhang, C. Yu, L. Jiao and J. Chen, Nano Lett., 16, 3321 (2016); https://doi.org/10.1021/acs.nanolett.6b00942
Q.D. Truong, M. Kempaiah Devaraju, P.D. Tran, Y. Gambe, K. Nayuki, Y. Sasaki and I. Honma, Chem. Mater., 29, 6245 (2017); https://doi.org/10.1021/acs.chemmater.7b01252
M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang and H. Dai, Nature, 520, 324 (2015); https://doi.org/10.1038/nature14340
A. Ponrouch, C. Frontera, F. Bardé and M.R. Palacín, Nat. Mater., 15, 169 (2016); https://doi.org/10.1038/nmat4462
J. Muldoon, C.B. Bucur and T. Gregory, Chem. Rev., 114, 11683 (2014); https://doi.org/10.1021/cr500049y
S. Tepavcevic, Y. Liu, D. Zhou, B. Lai, J. Maser, X. Zuo, H. Chan, P. Král, C.S. Johnson, V. Stamenkovic, N.M. Markovic and T. Rajh, ACS Nano, 9, 8194 (2015); https://doi.org/10.1021/acsnano.5b02450
D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich and E. Levi, Nature, 407, 724 (2000); https://doi.org/10.1038/35037553
L.F. Wan and D. Prendergast, J. Am. Chem. Soc., 136, 14456 (2014); https://doi.org/10.1021/ja505967u
T.J. Carter, R. Mohtadi, T.S. Arthur, F. Mizuno, R. Zhang, S. Shirai and J.W. Kampf, Angew. Chem. Int. Ed., 53, 3173 (2014); https://doi.org/10.1002/anie.201310317
P. Novák, R. Imhof and O. Haas, Electrochim. Acta, 45, 351 (1999); https://doi.org/10.1016/S0013 4686(99)00216-9
J. Muldoon, C.B. Bucur, A.G. Oliver, T. Sugimoto, M. Matsui, H.S. Kim, G.D. Allred, J. Zajicek and Y. Kotani, Energy Environ. Sci., 5, 5941 (2012); https://doi.org/10.1039/c2ee03029b
E. Levi, Y. Gofer and D. Aurbach, Chem. Mater., 22, 860 (2010); https://doi.org/10.1021/cm9016497
Z. Lu, A. Schechter, M. Moshkovich and D. Aurbach, J. Electroanal. Chem., 466, 203 (1999); https://doi.org/10.1016/S0022-0728(99)00146-1
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.-M. Tarascon, Nature, 407, 496 (2000); https://doi.org/10.1038/35035045
Y. Pan, Y. Zhang, X. Wei, C. Yuan, J. Yin, D. Cao and G. Wang, Electrochim. Acta, 109, 89 (2013); https://doi.org/10.1016/j.electacta.2013.07.026
N. Sivakumar, S.R.P. Gnanakan, K. Karthikeyan, S. Amaresh, W.S. Yoon, G.J. Park and Y.S. Lee, J. Alloys Compd., 509, 7038 (2011); https://doi.org/10.1016/j.jallcom.2011.03.123
D.C. Bock, K.R. Tallman, H. Guo, C. Quilty, S. Yan, P.F. Smith, B. Zhang, D.M. Lutz, A.H. McCarthy, M.M. Huie, V. Burnett, A.M. Bruck, A.C. Marschilok, E.S. Takeuchi, P. Liu and K.J. Takeuchi, Phys. Chem.
Chem. Phys., 22, 26200 (2020); https://doi.org/10.1039/D0CP02322A
C. Kim, P.J. Phillips, B. Key, T. Yi, D. Nordlund, Y.-S. Yu, R.D. Bayliss, S.-D. Han, M. He, Z. Zhang, A.K. Burrell, R.F. Klie and J. Cabana, Adv. Mater., 27, 3377 (2015); https://doi.org/10.1002/adma.201500083
M. Liu, Z. Rong, R. Malik, P. Canepa, A. Jain, G. Ceder and K.A. Persson, Energy Environ. Sci., 8, 964 (2015); https://doi.org/10.1039/C4EE03389B
Z. Feng, X. Chen, L. Qiao, A.L. Lipson, T.T. Fister, L. Zeng, C. Kim, T. Yi, N. Sa, D.L. Proffit, A.K. Burrell, J. Cabana, B.J. Ingram, M.D. Biegalski, M.J. Bedzyk and P. Fenter, ACS Appl. Mater. Interfaces, 7, 28438 (2015); https://doi.org/10.1021/acsami.5b09346
H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour and D. Aurbach, Energy Environ. Sci., 6, 2265 (2013); https://doi.org/10.1039/c3ee40871j
M. Mao, T. Gao, S. Hou and C. Wang, Chem. Soc. Rev., 47, 8804 (2018); https://doi.org/10.1039/C8CS00319J
S. Okamoto, T. Ichitsubo, T. Kawaguchi, Y. Kumagai, F. Oba, S. Yagi, K. Shimokawa, N. Goto, T. Doi and E. Matsubara, Adv. Sci., 8, 1500072 (2015); https://doi.org/10.1002/advs.201500072
R. Yokozaki, H. Kobayashi and I. Honma, Ceram. Int., 47, 10236 (2021); https://doi.org/10.1016/j.ceramint.2020.10.184
M.M. Thackeray, W.I.F. David, P.G. Bruce and J.B. Goodenough, Mater. Res. Bull., 18, 461 (1983); https://doi.org/10.1016/0025-5408(83)90138-1
M.M. Thackeray, Prog. Solid State Chem., 25, 1 (1997); https://doi.org/10.1016/S0079-6786(97)81003 5
K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita, J. Electrochem. Soc., 143, 1607 (1996); https://doi.org/10.1149/1.1836686
Y. Terada, K. Yasaka, F. Nishikawa, T. Konishi, M. Yoshio and I. Nakai, J. Solid State Chem., 156, 286 (2001); https://doi.org/10.1006/jssc.2000.8990
D. Liu, Y. Lu and J.B. Goodenough, J. Electrochem. Soc., 157, A1269 (2010); https://doi.org/10.1149/1.3491365
H. Kawai, M. Nagata, H. Kageyama, H. Tukamoto and A.R. West, Electrochim. Acta, 45, 315 (1999); https://doi.org/10.1016/S0013-4686(99)00213-3
Q.D. Truong, H. Kobayashi, K. Nayuki, Y. Sasaki and I. Honma, Solid State Ion., 344, 115136 (2020); https://doi.org/10.1016/j.ssi.2019.115136
Q.D. Truong, H. Kobayashi and I. Honma, RSC Adv., 9, 36717 (2019); https://doi.org/10.1039/C9RA04936C
T.S. Arthur, R. Zhang, C. Ling, P.-A. Glans, X. Fan, J. Guo and F. Mizuno, ACS Appl. Mater. Interfaces, 6, 7004 (2014); https://doi.org/10.1021/am5015327
M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou and I. Honma, J. Am. Chem. Soc., 129, 7444 (2007); https://doi.org/10.1021/ja0681927
M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo and I. Honma, ACS Nano, 4, 741 (2010); https://doi.org/10.1021/nn9012065
M. Fracchia, M. Manzoli, U. Anselmi-Tamburini and P. Ghigna, Scr. Mater., 188, 26 (2020); https://doi.org/10.1016/j.scriptamat.2020.07.002
V.S. Zhandun and A.V. Nemtsev, Mater. Chem. Phys., 259, 124065 (2021); https://doi.org/10.1016/j.matchemphys.2020.124065
A. Sankaramahalingam and J.B. Lawrence, Nano-Metal Chem., 42, 121 (2012); https://doi.org/10.1080/15533174.2011.609500
W.B. Cross, L. Affleck, M.V. Kuznetsov, I.P. Parkin and Q.A. Pankhurst, J. Mater. Chem., 9, 2545 (1999); https://doi.org/10.1039/a904431k
M.A. Ahmed, E. Ateia and F.M. Salem, J. Mater. Sci., 42, 3651 (2007); https://doi.org/10.1007/s10853 006-1349-0
F.A. Radwan, M.A. Ahmed and G. Abdelatif, J. Phys. Chem. Solids, 64, 2465 (2003); https://doi.org/10.1016/j.jpcs.2003.08.003
K. Shimokawa and T. Ichitsubo, Curr. Opin. Electrochem., 21, 93 (2020); https://doi.org/10.1016/j.coelec.2020.01.017
N. Kitamura, Y. Tanabe, N. Ishida and Y. Idemoto, Chem. Commun., 55, 2517 (2019); https://doi.org/10.1039/C8CC09713E
K. Shimokawa, H. Matsumoto and T. Ichitsubo, J. Phys. Chem. Lett., 9, 4732 (2018); https://doi.org/10.1021/acs.jpclett.8b02209
Y. Kotani, R. Ise, K. Ishii, T. Mandai, Y. Oaki, S. Yagi and H. Imai, J. Alloys Compd., 739, 793 (2018); https://doi.org/10.1016/j.jallcom.2017.12.315
T. Ichitsubo, S. Okamoto, T. Kawaguchi, Y. Kumagai, F. Oba, S. Yagi, N. Goto, T. Doi and E. Matsubara, J. Mater. Chem. A Mater. Energy Sustain., 3, 10188 (2015); https://doi.org/10.1039/C5TA01365H
T. Ichitsubo, T. Adachi, S. Yagi and T. Doi, J. Mater. Chem., 21, 11764 (2011); https://doi.org/10.1039/c1jm11793a