Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Castor Oil based Pristine and Silver Nanoparticle Embedded Polyurethanes and their Characterization by Thermal and Antibacterial Activity Analysis for Biomedical Applications
Corresponding Author(s) : K. Subramanian
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
Ecofriendly and sustainable pristine and silver nanoparticle embedded polyurethanes (PUs)/polyureas were synthesized by using the renewable castor oil as the main component, 1,6-hexane diol, poly(propylene glycol) and poly(propylene glycol)-bis-2-amino propyl ether as chain extenders, trimethylolpropane/or glycerol as cross linkers and toluene diisocyanate and dibutyltindilaurate as curator and catalyst, respectively. The prepared PUs were characterized for their thermal degradation by simultaneous TGA/DTA, structural features by FT-IR and antibacterial activity against Bacillus subtilis and E. coli. The onset degradation temperature (265-269 ºC) of the PUs was much lower than the onset weight loss temperature of castor oil. In air, the thermal degradation was exothermic at temperatures beyond 300 ºC. Unlike the pristine PUs, AgNPs embedded PUs displayed antibacterial activity and comparatively lower degradation temperature due to the catalytic effect of silver nanoparticles (AgNPs). These PUs may be used for various biomedical applications such as antibacterial foam, antibacterial scaffold, body implant, food packaging, wound dressing, etc.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.O. Akindoyo, M.D.H. Beg, S. Ghazali, M.R. Islam, N. Jeyaratnam and A.R. Yuvaraj, RSC Adv., 6, 114453 (2016); https://doi.org/10.1039/C6RA14525F
- K. Kong, G. Liu and J.M. Curtis, Eur. Polym. J., 48, 2097 (2012); https://doi.org/10.1016/j.eurpolymj.2012.08.012
- M. Szycher, Szycher’s Handbook of Polyurethane, CRC Press: Boca Raton, Ed.: 2 (2013).
- S. Miao, S. Zhang, Z. Su and P. Wang, Ed.: M. Mishra, Plant-Oil based Polymers: Candidate Biomaterials, In: Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, CRC Press, Boca Raton (2015).
- A. Zlantanic, C. Lava, W. Zhang and Z.S. Petrovic, J. Polym. Sci. Pol. Phys., 42, 809 (2004); https://doi.org/10.1002/polb.10737
- Z.S. Petrovic, Y. Xu, J. Milic, G. Glenn and A. Klamczynski, J. Polym. Environ., 18, 94 (2010); https://doi.org/10.1007/s10924-010-0194-z
- S.V. Levchik and E.D. Weil, Polym. Int., 53, 1585 (2004); https://doi.org/10.1002/pi.1314
- D.K. Chattopadhyay and C. Webster, Prog. Polym. Sci., 34, 1068 (2009); https://doi.org/10.1016/j.progpolymsci.2009.06.002
- G. Oertel, Polyurethane Handbook, Hanser Gardner Publications: Cincinnati, OH (1994).
- D.P. Pfister, Y. Xia and R.C. Larock, ChemSusChem, 4, 703 (2011); https://doi.org/10.1002/cssc.201000378
- W. Wang and C. Wang, Mechanical Engineering Series, Wood Head Publishing Reviews, pp. 115-151 (2012).
- S. Wendels and L. Averous, Bioact. Mater., 6, 1083 (2021); https://doi.org/10.1016/j.bioactmat.2020.10.002
- R.J. Zdrahala and I.J. Zdrahala, J. Biomater. Appl., 14, 67 (1999); https://doi.org/10.1177/088532829901400104
- H. Yeganeh and P. Hojati-Talemi, Polym. Degrad. Stab., 92, 480 (2007); https://doi.org/10.1016/j.polymdegradstab.2006.10.011
- X. Kong, G. Liu, H. Qi and J.M. Curtis, Prog. Org. Coat., 76, 1151 (2013); https://doi.org/10.1016/j.porgcoat.2013.03.019
- T.F. Garrison, M.R. Kessler and R.C. Larock, Polymer, 55, 1004 (2014); https://doi.org/10.1016/j.polymer.2014.01.014
- V.V. Gite, P.P. Mahulikar, D.G. Hundiwale and U.R. Kapadi, J. Sci. Ind. Res. (India), 63, 348 (2004).
- K.P. Chandrashekhar, S.D. Rajput, R.J. Marathe, R.D. Kulkarni, H. Phadnis, D. Sohn, P.P. Mahulikar and V.V. Gite, Prog. Org. Coat., 106, 87 (2016); https://doi.org/10.1016/j.porgcoat.2016.11.024
- F. Abdolhosseini and M.K.B. Givi, Am. J. Polym. Sci., 6, 18 (2016).
- A.Austin and D. Hicks, PU Magazine, 13, 442 (2016).
- Z. Gao, J. Peng, T. Zhong, J. Sun, X. Wang and C. Yue, Carbohydr. Polym., 87, 2068 (2012); https://doi.org/10.1016/j.carbpol.2011.10.027
- I. Ganetri, L. Tighzert, P. Dony and A. Challioui, J. Mater. Environ. Sci., 4, 571 (2013).
- A. Sirkecioglu, H.B. Mutlu, C. Citak, A. Koc and F.S. Guner, Polym. Eng. Sci., 54, 1182 (2014); https://doi.org/10.1002/pen.23640
- S. Ibrahim, A. Ahmad and N.S. Mohamed, Polymers, 7, 747 (2015); https://doi.org/10.3390/polym7040747
- M.B. Dalen, A.Q. Ibrahim and H.M. Adamu, Br. J. Appl. Sci. Technol., 4, 2661 (2014).
- R.T. Darby and A.M. Kaplan, Appl. Microbiol., 16, 900 (1968); https://doi.org/10.1128/am.16.6.900 905.1968
- K. Gorona and S. Gogolewski, ASTM Spec Tech Publ., pp. 39–57 (2000).
- N. Lamba, K. Woodhouse and S. Cooper, Polyurethanes in Biomedical Applications, CRC Press: New York (1998).
- L. Hartman, R.C.A. Lago, L.C. Azeredo and M.A.A. Azeredo, Analyst, 112, 145 (1987); https://doi.org/10.1039/an9871200145
- S. Iravani, S. Korbekandi, S.V. Mirmohammadi and B. Zolfaghar, Res. Pharm. Sci., 9, 385 (2014).
- C. Quintero-Quiroz, N. Acevedo, J. Zapata-Giraldo, L.E. Botero, J. Quintero, D. Zárate-Triviño, J. Saldarriaga and V.Z. Pérez, Biomater. Res., 23, 27 (2019); https://doi.org/10.1186/s40824-019-0173-y
- P. Roy, B. Das, A. Mohanty and S. Mohapatra, Appl. Nanosci., 7, 843 (2017); https://doi.org/10.1007/s13204-017-0621-8
- B. Domenech, K. Ziegler, N. Vigues, W. Olszewski, C. Marini, J. Mas, M. Munoz, D.N. Muraviev and J. Macanas, New J. Chem., 40, 3716 (2016); https://doi.org/10.1039/C5NJ03202D
- B. Pant, M. Park and S.-J. Park, Polymers, 11, 1185 (2019); https://doi.org/10.3390/polym11071185
- M.J. Lerma-Garcia, G. Ramis-Ramos, J.M. Herrero-Martinez and E.F. Simo-Alfonso, Food Chem., 118, 78 (2010); https://doi.org/10.1016/j.foodchem.2009.04.092
- T. Panhwar, S.A. Mahesar, A.A. Kandhro, S.T.H. Sheerazi, A.H. Kori, Z.H. Laghari and J.-R. Memon, Ukr. Food J., 8, 778 (2019); https://doi.org/10.24263/2304-974X-2019-8-4-9
- S.T.H. Sherazi, A. Kandhro, S.A. Mahesar, M.I. Bhanger, M.Y. Talpur and S. Arain, Food Chem., 114, 323 (2009); https://doi.org/10.1016/j.foodchem.2008.09.058
- E. Lukitaningsih, M. Saadah, P. Purwanto and A. Rohman, J. Am. Oil Chem. Soc., 89, 1537 (2012); https://doi.org/10.1007/s11746-012-2052-8
- S.S. Narine, X. Kong, L. Bouzidi and P. Sporns, J. Am. Oil Chem. Soc., 84, 55 (2007); https://doi.org/10.1007/s11746-006-1006-4
- G. Trovati, E.A. Sanches, S.C. Neto, Y.P. Mascarenhas and G.O. Chierice, J. Appl. Polym. Sci., 115, 263 (2010); https://doi.org/10.1002/app.31096
- J. Bandekar and S. Klima, J. Mol. Struct., 263, 45 (1991); https://doi.org/10.1016/0022-2860(91)80054 8
- Y. Qing, L. Cheng, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu and Y. Qin, Int. J. Nanomedicine, 13, 3311 (2018); https://doi.org/10.2147/IJN.S165125
- M.A. Corcuera, L. Rueda, B. Fernandez d’Arlas, A. Arbelaiz, C. Marieta, I. Mondragon and A. Eceiza, Polym. Degrad. Stab., 95, 2175 (2010); https://doi.org/10.1016/j.polymdegradstab.2010.03.001
- M. Sultan, H.N. Bhatti, M. Zuber and M. Barikani, J. Chem. Soc. Pak., 36, 332 (2013).
- E. Hablot, D. Zheng, M. Bouquey and L. Averous, Macromol. Mater. Eng., 293, 922 (2008); https://doi.org/10.1002/mame.200800185
- M.I. Aranguren, I. Rácz and N.E. Marcovich, J. Appl. Polym. Sci., 105, 2791 (2007); https://doi.org/10.1002/app.26526
- N. Narayan, A. Meiyazhagan and R. Vajtai, Materials, 12, 3602 (2019); https://doi.org/10.3390/ma12213602
References
J.O. Akindoyo, M.D.H. Beg, S. Ghazali, M.R. Islam, N. Jeyaratnam and A.R. Yuvaraj, RSC Adv., 6, 114453 (2016); https://doi.org/10.1039/C6RA14525F
K. Kong, G. Liu and J.M. Curtis, Eur. Polym. J., 48, 2097 (2012); https://doi.org/10.1016/j.eurpolymj.2012.08.012
M. Szycher, Szycher’s Handbook of Polyurethane, CRC Press: Boca Raton, Ed.: 2 (2013).
S. Miao, S. Zhang, Z. Su and P. Wang, Ed.: M. Mishra, Plant-Oil based Polymers: Candidate Biomaterials, In: Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, CRC Press, Boca Raton (2015).
A. Zlantanic, C. Lava, W. Zhang and Z.S. Petrovic, J. Polym. Sci. Pol. Phys., 42, 809 (2004); https://doi.org/10.1002/polb.10737
Z.S. Petrovic, Y. Xu, J. Milic, G. Glenn and A. Klamczynski, J. Polym. Environ., 18, 94 (2010); https://doi.org/10.1007/s10924-010-0194-z
S.V. Levchik and E.D. Weil, Polym. Int., 53, 1585 (2004); https://doi.org/10.1002/pi.1314
D.K. Chattopadhyay and C. Webster, Prog. Polym. Sci., 34, 1068 (2009); https://doi.org/10.1016/j.progpolymsci.2009.06.002
G. Oertel, Polyurethane Handbook, Hanser Gardner Publications: Cincinnati, OH (1994).
D.P. Pfister, Y. Xia and R.C. Larock, ChemSusChem, 4, 703 (2011); https://doi.org/10.1002/cssc.201000378
W. Wang and C. Wang, Mechanical Engineering Series, Wood Head Publishing Reviews, pp. 115-151 (2012).
S. Wendels and L. Averous, Bioact. Mater., 6, 1083 (2021); https://doi.org/10.1016/j.bioactmat.2020.10.002
R.J. Zdrahala and I.J. Zdrahala, J. Biomater. Appl., 14, 67 (1999); https://doi.org/10.1177/088532829901400104
H. Yeganeh and P. Hojati-Talemi, Polym. Degrad. Stab., 92, 480 (2007); https://doi.org/10.1016/j.polymdegradstab.2006.10.011
X. Kong, G. Liu, H. Qi and J.M. Curtis, Prog. Org. Coat., 76, 1151 (2013); https://doi.org/10.1016/j.porgcoat.2013.03.019
T.F. Garrison, M.R. Kessler and R.C. Larock, Polymer, 55, 1004 (2014); https://doi.org/10.1016/j.polymer.2014.01.014
V.V. Gite, P.P. Mahulikar, D.G. Hundiwale and U.R. Kapadi, J. Sci. Ind. Res. (India), 63, 348 (2004).
K.P. Chandrashekhar, S.D. Rajput, R.J. Marathe, R.D. Kulkarni, H. Phadnis, D. Sohn, P.P. Mahulikar and V.V. Gite, Prog. Org. Coat., 106, 87 (2016); https://doi.org/10.1016/j.porgcoat.2016.11.024
F. Abdolhosseini and M.K.B. Givi, Am. J. Polym. Sci., 6, 18 (2016).
A.Austin and D. Hicks, PU Magazine, 13, 442 (2016).
Z. Gao, J. Peng, T. Zhong, J. Sun, X. Wang and C. Yue, Carbohydr. Polym., 87, 2068 (2012); https://doi.org/10.1016/j.carbpol.2011.10.027
I. Ganetri, L. Tighzert, P. Dony and A. Challioui, J. Mater. Environ. Sci., 4, 571 (2013).
A. Sirkecioglu, H.B. Mutlu, C. Citak, A. Koc and F.S. Guner, Polym. Eng. Sci., 54, 1182 (2014); https://doi.org/10.1002/pen.23640
S. Ibrahim, A. Ahmad and N.S. Mohamed, Polymers, 7, 747 (2015); https://doi.org/10.3390/polym7040747
M.B. Dalen, A.Q. Ibrahim and H.M. Adamu, Br. J. Appl. Sci. Technol., 4, 2661 (2014).
R.T. Darby and A.M. Kaplan, Appl. Microbiol., 16, 900 (1968); https://doi.org/10.1128/am.16.6.900 905.1968
K. Gorona and S. Gogolewski, ASTM Spec Tech Publ., pp. 39–57 (2000).
N. Lamba, K. Woodhouse and S. Cooper, Polyurethanes in Biomedical Applications, CRC Press: New York (1998).
L. Hartman, R.C.A. Lago, L.C. Azeredo and M.A.A. Azeredo, Analyst, 112, 145 (1987); https://doi.org/10.1039/an9871200145
S. Iravani, S. Korbekandi, S.V. Mirmohammadi and B. Zolfaghar, Res. Pharm. Sci., 9, 385 (2014).
C. Quintero-Quiroz, N. Acevedo, J. Zapata-Giraldo, L.E. Botero, J. Quintero, D. Zárate-Triviño, J. Saldarriaga and V.Z. Pérez, Biomater. Res., 23, 27 (2019); https://doi.org/10.1186/s40824-019-0173-y
P. Roy, B. Das, A. Mohanty and S. Mohapatra, Appl. Nanosci., 7, 843 (2017); https://doi.org/10.1007/s13204-017-0621-8
B. Domenech, K. Ziegler, N. Vigues, W. Olszewski, C. Marini, J. Mas, M. Munoz, D.N. Muraviev and J. Macanas, New J. Chem., 40, 3716 (2016); https://doi.org/10.1039/C5NJ03202D
B. Pant, M. Park and S.-J. Park, Polymers, 11, 1185 (2019); https://doi.org/10.3390/polym11071185
M.J. Lerma-Garcia, G. Ramis-Ramos, J.M. Herrero-Martinez and E.F. Simo-Alfonso, Food Chem., 118, 78 (2010); https://doi.org/10.1016/j.foodchem.2009.04.092
T. Panhwar, S.A. Mahesar, A.A. Kandhro, S.T.H. Sheerazi, A.H. Kori, Z.H. Laghari and J.-R. Memon, Ukr. Food J., 8, 778 (2019); https://doi.org/10.24263/2304-974X-2019-8-4-9
S.T.H. Sherazi, A. Kandhro, S.A. Mahesar, M.I. Bhanger, M.Y. Talpur and S. Arain, Food Chem., 114, 323 (2009); https://doi.org/10.1016/j.foodchem.2008.09.058
E. Lukitaningsih, M. Saadah, P. Purwanto and A. Rohman, J. Am. Oil Chem. Soc., 89, 1537 (2012); https://doi.org/10.1007/s11746-012-2052-8
S.S. Narine, X. Kong, L. Bouzidi and P. Sporns, J. Am. Oil Chem. Soc., 84, 55 (2007); https://doi.org/10.1007/s11746-006-1006-4
G. Trovati, E.A. Sanches, S.C. Neto, Y.P. Mascarenhas and G.O. Chierice, J. Appl. Polym. Sci., 115, 263 (2010); https://doi.org/10.1002/app.31096
J. Bandekar and S. Klima, J. Mol. Struct., 263, 45 (1991); https://doi.org/10.1016/0022-2860(91)80054 8
Y. Qing, L. Cheng, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu and Y. Qin, Int. J. Nanomedicine, 13, 3311 (2018); https://doi.org/10.2147/IJN.S165125
M.A. Corcuera, L. Rueda, B. Fernandez d’Arlas, A. Arbelaiz, C. Marieta, I. Mondragon and A. Eceiza, Polym. Degrad. Stab., 95, 2175 (2010); https://doi.org/10.1016/j.polymdegradstab.2010.03.001
M. Sultan, H.N. Bhatti, M. Zuber and M. Barikani, J. Chem. Soc. Pak., 36, 332 (2013).
E. Hablot, D. Zheng, M. Bouquey and L. Averous, Macromol. Mater. Eng., 293, 922 (2008); https://doi.org/10.1002/mame.200800185
M.I. Aranguren, I. Rácz and N.E. Marcovich, J. Appl. Polym. Sci., 105, 2791 (2007); https://doi.org/10.1002/app.26526
N. Narayan, A. Meiyazhagan and R. Vajtai, Materials, 12, 3602 (2019); https://doi.org/10.3390/ma12213602