Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Flavonoids from Alpinia officinarum as Potential Anti-Tubercular Agents Using Molecular Docking Studies
Corresponding Author(s) : Varsha S. Honmore
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
Bioguided isolation yielded three flavonoids galangin (1), kaempferide (2) and kaempferol (3) from methanol extract of Alpinia officinarum Hance. Galangin exhibited highest antitubercular activity, with MIC of < 4.0 μg/mL against M. bovis BCG (in vitro) and M. tuberculosis (ex vivo), than kaempferide. In vitro and ex vivo macrophage infection model assay revealed the inhibition of both active and dormant stage for M. tuberculosis H37Ra and M. bovis BCG on exposure to galangin. Molecular docking studies into the active site of DprE1 enzyme helped to understand the ligand-protein interactions and establish a structural basis for inhibition of M. tuberculosis. These flavonoids indicated their non-specificity towards M. tuberculosis by testing against Gram-positive and Gram-negative bacteria and also least cytotoxic up to 100 μg/mL on three human cancer cell lines THP-1, PANC-1 and A549, respectively. So these flavonoids are inhibitors against M. tuberculosis that can be explored further as potential antitubercular drugs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.P. Tripathi, N. Tewari, N. Dwivedi and V.K. Tiwari, Med. Res. Rev., 25, 93 (2005); https://doi.org/10.1002/med.20017
- U. Das, S. Das, B. Bandy, D.K.J. Gorecki and J.R. Dimmock, Eur. J. Med. Chem., 45, 4682 (2010); https://doi.org/10.1016/j.ejmech.2010.07.030
- L. Zhao, W. Qu, J.-Q. Fu and J.-Y. Liang, Chin. J. Nat. Med., 8, 241 (2010); https://doi.org/10.3724/SP.J.1009.2010.00241
- N. An, Z.M. Zou, Z. Tian, X.Z. Luo, S.L. Yang and L.Z. Xu, Fitoterapia, 79, 27 (2008); https://doi.org/10.1016/j.fitote.2007.07.001
- Y. Sun, K. Tabata, H. Matsubara, S. Kitanaka, T. Suzuki and K. Yasukawa, Planta Med., 74, 427 (2008); https://doi.org/10.1055/s-2008-1034345
- H. Matsuda, S. Nakashima, Y. Oda, S. Nakamura and M. Yoshikawa, Bioorg. Med. Chem., 17, 6048 (2009); https://doi.org/10.1016/j.bmc.2009.06.057
- J.E. Shin, M.J. Han and D.H. Kim, Biol. Pharm. Bull., 26, 854 (2003); https://doi.org/10.1248/bpb.26.854
- T.N. Ly, M. Shimoyamada, K. Kato and R. Yamauchi, J. Agric. Food Chem., 51, 4924 (2003); https://doi.org/10.1021/jf034295m
- V.S. Honmore, S.R. Rojatkar, L.U. Nawale, M.A. Arkile, V.M. Khedkar, A.D. Natu and D. Sarkar, Nat. Prod. Res., 30, 2825 (2016); https://doi.org/10.1080/14786419.2016.1149702
- U. Singh, S. Akhtar, A. Mishra and D. Sarkar, J. Microbiol. Methods, 84, 202 (2011); https://doi.org/10.1016/j.mimet.2010.11.013
- A. Khan and D. Sarkar, J. Microbiol. Methods, 73, 62 (2008); https://doi.org/10.1016/j.mimet.2008.01.015
- R. Singh, L.U. Nawale, M.A. Arkile, U.U. Shedbalkar, S.A. Wadhwani, D. Sarkar and B.A. Chopade, Int. J. Antimicrob. Agents, 46, 183 (2015); https://doi.org/10.1016/j.ijantimicag.2015.03.014
- S. Sarkar and D. Sarkar, J. Biomol. Screen., 17, 966 (2012); https://doi.org/10.1177/1087057112445485
- 14 J.P. Dzoyem, S.K. Guru, C.A. Pieme, V. Kuete, A. Sharma, I.A. Khan, A.K. Saxena and R.A. Vishwakarma, BMC Complement. Altern. Med., 13, 78 (2013); https://doi.org/10.1186/1472-6882-13-78
- C.L. Cantrell, I.S. Nuñez, J. Castañeda-Acosta, M. Foroozesh, F.R. Fronczek, N.H. Fischer and S.G. Franzblau, J. Nat. Prod., 61, 1181 (1998); https://doi.org/10.1021/np970333i
- S. Kang, R.Y. Kim, M.J. Seo, S. Lee, Y.M. Kim, M. Seo, J.J. Seo, Y. Ko, I. Choi, J. Jang, J. Nam, S. Park, H. Kang, H.J. Kim, J. Kim, S. Ahn, K. Pethe, K. Nam, Z. No and J. Kim, J. Med. Chem., 57, 5293 (2014); https://doi.org/10.1021/jm5003606.
- A.A. Van de Loosdrecht, G.J. Ossenkopele, R.H.J. Beelen, M.G. Broekhoven, M.H. van Of, A.M. Drager, P.C. Huijgens and M.M. Langenhuijsen, Leukemia, 8, 1392 (1994).
- M.C. Alley, D.A. Scudiero, A. Monks, M.L. Hursey, M.J. Ciezerwinski and D.L. Fine, Cancer Res., 48, 589 (1988).
- G. Ciapetti, E. Cenni, L. Pratelli and A. Pizzoferrato, Biomaterials, 14, 359 (1993); https://doi.org/10.1016/0142-9612(93)90055-7
- T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
- R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis and P.S. Shenkin, J. Med. Chem., 47, 1739 (2004); https://doi.org/10.1021/jm0306430
- T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard and J.L. Banks, J. Med. Chem., 47, 1750 (2004); https://doi.org/10.1021/jm030644s
- G. Riccardi, M.R. Pasca, L.R. Chiarelli, G. Manina, A. Mattevi and C. Binda, Appl. Microbiol. Biotechnol., 97, 8841 (2013); https://doi.org/10.1007/s00253-013-5218-x
- B.A. Wolucka, FEBS J., 275, 2691 (2008); https://doi.org/10.1111/j.1742-4658.2008.06395.x
- M. Brecik, I. Centárová, R. Mukherjee, G.S. Kolly, S. Huszár, A. Bobovská, E. Kilacsková, V. Mokošová, Z. Svetlíková, M. Šarkan, J. Neres, J. Korduláková, S.T. Cole and K. Mikušová, ACS Chem. Biol., 10, 1631 (2015); https://doi.org/10.1021/acschembio.5b00237
- B. Lechartier, J. Rybniker, A. Zumla and S.T. Cole, EMBO Mol. Med., 6, 158 (2014); https://doi.org/10.1002/emmm.201201772
- R.F.V. Souza and W.F. De Giovani, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 1985 (2005); https://doi.org/10.1016/j.saa.2004.07.029
- L. Eunjung, M. Byoung-Ho, P. Younghee, H. Sungwon, L. Sunheem, L. Younggiu and L. Yoongho, J. Bull. Korean Chem. Soc., 29, 507 (2008); https://doi.org/10.5012/bkcs.2008.29.2.507
- M.S. Rahaman, M. Hasan, M.Y. Ali and M.U. Ali, Bangladesh J. Sci. Ind. Res., 41, 93 (2006); https://doi.org/10.3329/bjsir.v41i1.276
References
R.P. Tripathi, N. Tewari, N. Dwivedi and V.K. Tiwari, Med. Res. Rev., 25, 93 (2005); https://doi.org/10.1002/med.20017
U. Das, S. Das, B. Bandy, D.K.J. Gorecki and J.R. Dimmock, Eur. J. Med. Chem., 45, 4682 (2010); https://doi.org/10.1016/j.ejmech.2010.07.030
L. Zhao, W. Qu, J.-Q. Fu and J.-Y. Liang, Chin. J. Nat. Med., 8, 241 (2010); https://doi.org/10.3724/SP.J.1009.2010.00241
N. An, Z.M. Zou, Z. Tian, X.Z. Luo, S.L. Yang and L.Z. Xu, Fitoterapia, 79, 27 (2008); https://doi.org/10.1016/j.fitote.2007.07.001
Y. Sun, K. Tabata, H. Matsubara, S. Kitanaka, T. Suzuki and K. Yasukawa, Planta Med., 74, 427 (2008); https://doi.org/10.1055/s-2008-1034345
H. Matsuda, S. Nakashima, Y. Oda, S. Nakamura and M. Yoshikawa, Bioorg. Med. Chem., 17, 6048 (2009); https://doi.org/10.1016/j.bmc.2009.06.057
J.E. Shin, M.J. Han and D.H. Kim, Biol. Pharm. Bull., 26, 854 (2003); https://doi.org/10.1248/bpb.26.854
T.N. Ly, M. Shimoyamada, K. Kato and R. Yamauchi, J. Agric. Food Chem., 51, 4924 (2003); https://doi.org/10.1021/jf034295m
V.S. Honmore, S.R. Rojatkar, L.U. Nawale, M.A. Arkile, V.M. Khedkar, A.D. Natu and D. Sarkar, Nat. Prod. Res., 30, 2825 (2016); https://doi.org/10.1080/14786419.2016.1149702
U. Singh, S. Akhtar, A. Mishra and D. Sarkar, J. Microbiol. Methods, 84, 202 (2011); https://doi.org/10.1016/j.mimet.2010.11.013
A. Khan and D. Sarkar, J. Microbiol. Methods, 73, 62 (2008); https://doi.org/10.1016/j.mimet.2008.01.015
R. Singh, L.U. Nawale, M.A. Arkile, U.U. Shedbalkar, S.A. Wadhwani, D. Sarkar and B.A. Chopade, Int. J. Antimicrob. Agents, 46, 183 (2015); https://doi.org/10.1016/j.ijantimicag.2015.03.014
S. Sarkar and D. Sarkar, J. Biomol. Screen., 17, 966 (2012); https://doi.org/10.1177/1087057112445485
14 J.P. Dzoyem, S.K. Guru, C.A. Pieme, V. Kuete, A. Sharma, I.A. Khan, A.K. Saxena and R.A. Vishwakarma, BMC Complement. Altern. Med., 13, 78 (2013); https://doi.org/10.1186/1472-6882-13-78
C.L. Cantrell, I.S. Nuñez, J. Castañeda-Acosta, M. Foroozesh, F.R. Fronczek, N.H. Fischer and S.G. Franzblau, J. Nat. Prod., 61, 1181 (1998); https://doi.org/10.1021/np970333i
S. Kang, R.Y. Kim, M.J. Seo, S. Lee, Y.M. Kim, M. Seo, J.J. Seo, Y. Ko, I. Choi, J. Jang, J. Nam, S. Park, H. Kang, H.J. Kim, J. Kim, S. Ahn, K. Pethe, K. Nam, Z. No and J. Kim, J. Med. Chem., 57, 5293 (2014); https://doi.org/10.1021/jm5003606.
A.A. Van de Loosdrecht, G.J. Ossenkopele, R.H.J. Beelen, M.G. Broekhoven, M.H. van Of, A.M. Drager, P.C. Huijgens and M.M. Langenhuijsen, Leukemia, 8, 1392 (1994).
M.C. Alley, D.A. Scudiero, A. Monks, M.L. Hursey, M.J. Ciezerwinski and D.L. Fine, Cancer Res., 48, 589 (1988).
G. Ciapetti, E. Cenni, L. Pratelli and A. Pizzoferrato, Biomaterials, 14, 359 (1993); https://doi.org/10.1016/0142-9612(93)90055-7
T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis and P.S. Shenkin, J. Med. Chem., 47, 1739 (2004); https://doi.org/10.1021/jm0306430
T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard and J.L. Banks, J. Med. Chem., 47, 1750 (2004); https://doi.org/10.1021/jm030644s
G. Riccardi, M.R. Pasca, L.R. Chiarelli, G. Manina, A. Mattevi and C. Binda, Appl. Microbiol. Biotechnol., 97, 8841 (2013); https://doi.org/10.1007/s00253-013-5218-x
B.A. Wolucka, FEBS J., 275, 2691 (2008); https://doi.org/10.1111/j.1742-4658.2008.06395.x
M. Brecik, I. Centárová, R. Mukherjee, G.S. Kolly, S. Huszár, A. Bobovská, E. Kilacsková, V. Mokošová, Z. Svetlíková, M. Šarkan, J. Neres, J. Korduláková, S.T. Cole and K. Mikušová, ACS Chem. Biol., 10, 1631 (2015); https://doi.org/10.1021/acschembio.5b00237
B. Lechartier, J. Rybniker, A. Zumla and S.T. Cole, EMBO Mol. Med., 6, 158 (2014); https://doi.org/10.1002/emmm.201201772
R.F.V. Souza and W.F. De Giovani, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 1985 (2005); https://doi.org/10.1016/j.saa.2004.07.029
L. Eunjung, M. Byoung-Ho, P. Younghee, H. Sungwon, L. Sunheem, L. Younggiu and L. Yoongho, J. Bull. Korean Chem. Soc., 29, 507 (2008); https://doi.org/10.5012/bkcs.2008.29.2.507
M.S. Rahaman, M. Hasan, M.Y. Ali and M.U. Ali, Bangladesh J. Sci. Ind. Res., 41, 93 (2006); https://doi.org/10.3329/bjsir.v41i1.276