Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis and in vitro Anti-Tubercular Activity of Monometallic and Bimetallic Oxide Nanoparticles
Corresponding Author(s) : Vidya K. Kalyankar
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
Tuberculosis (TB) is an infectious disease with limited drugs and currently the research is focused on its prevention, diagnosis and treatment. In recent studies, it is observed that the therapeutics approach of tuberculosis is more convenient to use nanoparticles for the treatment. With this regard, we foccussed present study towards modified green synthesis of monometallic oxide and bimetallic Cu-Zn and Cu-Mn oxide nanoparticles using Ficus religosa extract. All the synthesized bimetallic Cu-Zn oxide and Cu-Mn oxide nanoparticles were characterized by powdered XRD, FTIR, FE-SEM with EDS reports and ESR spectra. All the monometallic and bimetallic oxide nanoparticles were tested for in vitro anti-tubercular, antibacterial and cytotoxic activity. The Cu-Mn oxide nanoparticles showed promising result with IC50 = 6.27 μg/mL, MIC = 53.61 μg/mL and IC50 = 8.81 μg/mL, MIC= 54.82 μg/mL against M. tuberculosis H37Ra at dormant state and active state, respectively. Whereas Cu-Zn and Cu-Mn oxide nanoparticles showed moderate effect against M. tuberculosis H37Ra. On the other hand, all these nanoparticles were inactive against two Gram-positive and two Gram-negative bacterial strains with low cytotoxicity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Dhamnetiya, P. Patel, R.P. Jha, N. Shri, M. Singh and K. Bhattacharyya, BMC Pulm. Med., 21, 375 (2021); https://doi.org/10.1186/s12890-021-01740-y
- H. Cox, S. Hargreaves and G. Ismailov, Lancet, 362, 1858 (2003); https://doi.org/10.1016/S0140 6736(03)14918-5
- A. Kolloli and S. Subbian, Front. Med., 4, 171 (2017); https://doi.org/10.3389/fmed.2017.00171
- P.H. Elworthy and C.B. Macfarlane, J. Pharm. Pharm. Sci., 14, 100 (2011); https://doi.org/10.1111/j.2042-7158.1962.tb10540.x
- S. Vijayakumar, M. Nilavukkarasi and B. Sakthivel, Gene Rep., 20, 100764 (2020); https://doi.org/10.1016/j.genrep.2020.100764
- Y.V. Anisimova, S.I. Gelperina, C.A. Peloquin and L.B. Heifets, J. Nanopart. Res., 2, 165 (2000); https://doi.org/10.1023/A:1010061013365
- E. Grotz, N. Tateosian, N. Amiano, M. Cagel, E. Bernabeu, D.A. Chiappetta and M.A. Moretton, Pharm. Res., 35, 213 (2018); https://doi.org/10.1007/s11095-018-2497-z
- A. Gupta, S. Pandey and J.S. Yadav, Adv. Pharm. Bull., 11, 10 (2021); https://doi.org/10.34172/apb.2021.002
- V.K. Kalyankar, S.P. Dagade and S.A. Waghmode, Res. J. Chem. Environ., 19, 44 (2015).
- U. Holzwarth and N. Gibson, Nature Nanotechnology, 6, 534 (2011); https://doi.org/10.1038/nnano.2011.145
- U. Singh, S. Akhtar, A. Mishra and D. Sarkar, J. Microbiol. Methods, 84, 202 (2011); https://doi.org/10.1016/j.mimet.2010.11.013
- S. Sarkar and D. Sarkar, J. Biomol. Screen., 17, 966 (2012); https://doi.org/10.1177/1087057112445485
- J.P. Dzoyem, S.K. Guru, C.A. Pieme, V. Kuete, A. Sharma, I.A. Khan, A.K. Saxena and R.A. Vishwakarma, BMC Complement. Altern. Med., 13, 78 (2013); https://doi.org/10.1186/1472-6882-13-78
- C.L. Cantrell, I.S. Nuñez, J. Castañeda-Acosta, M. Foroozesh, F.R. Fronczek, N.H. Fischer and S.G. Franzblau, J. Nat. Prod., 61, 1181 (1998); https://doi.org/10.1021/np970333i
- S. Kang, R.Y. Kim, M.J. Seo, S. Lee, Y.M. Kim, M. Seo, J.J. Seo, Y. Ko, I. Choi, J. Jang, J. Nam, S. Park, H. Kang, H.J. Kim, J. Kim, S. Ahn, K. Pethe, K. Nam, Z. No and J. Kim, J. Med. Chem., 57, 5293 (2014); https://doi.org/10.1021/jm5003606
- A.A. van de Loosdrecht, G.J. Ossenkopele, R.H.J. Beelen, M.G. Broekhoven, M.H. van Of, A.M. Drager, P.C. Huijgens and M.M. Langenhuijsen, Leukemia, 8, 1392 (1994).
- M.C. Alley, D.A. Scudiero, A. Monks, M.L. Hursey, M.J. Ciezerwinski and D.L. Fine, Cancer Res., 48, 589 (1988).
- G. Ciapetti, E. Cenni, L. Pratelli and A. Pizzoferrato, Biomaterials, 14, 359 (1993); https://doi.org/10.1016/0142-9612(93)90055-7
- T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
- Triloki, P. Garg, R. Rai and B.K. Singh, Nucl. Instrum. Methods Phys. Res. A, 736, 128 (2014); https://doi.org/10.1016/j.nima.2013.10.075
- L.M. Seaverson and J.D. Corbett, Inorg. Chem., 22, 3202 (1983); https://doi.org/10.1021/ic00164a008
- Z.W. Mao, K.B. Yu, D. Chen, S.Y. Han, Y.X. Sui and W.X. Tang, Inorg. Chem., 32, 3104 (1993); https://doi.org/10.1021/ic00066a023
References
D. Dhamnetiya, P. Patel, R.P. Jha, N. Shri, M. Singh and K. Bhattacharyya, BMC Pulm. Med., 21, 375 (2021); https://doi.org/10.1186/s12890-021-01740-y
H. Cox, S. Hargreaves and G. Ismailov, Lancet, 362, 1858 (2003); https://doi.org/10.1016/S0140 6736(03)14918-5
A. Kolloli and S. Subbian, Front. Med., 4, 171 (2017); https://doi.org/10.3389/fmed.2017.00171
P.H. Elworthy and C.B. Macfarlane, J. Pharm. Pharm. Sci., 14, 100 (2011); https://doi.org/10.1111/j.2042-7158.1962.tb10540.x
S. Vijayakumar, M. Nilavukkarasi and B. Sakthivel, Gene Rep., 20, 100764 (2020); https://doi.org/10.1016/j.genrep.2020.100764
Y.V. Anisimova, S.I. Gelperina, C.A. Peloquin and L.B. Heifets, J. Nanopart. Res., 2, 165 (2000); https://doi.org/10.1023/A:1010061013365
E. Grotz, N. Tateosian, N. Amiano, M. Cagel, E. Bernabeu, D.A. Chiappetta and M.A. Moretton, Pharm. Res., 35, 213 (2018); https://doi.org/10.1007/s11095-018-2497-z
A. Gupta, S. Pandey and J.S. Yadav, Adv. Pharm. Bull., 11, 10 (2021); https://doi.org/10.34172/apb.2021.002
V.K. Kalyankar, S.P. Dagade and S.A. Waghmode, Res. J. Chem. Environ., 19, 44 (2015).
U. Holzwarth and N. Gibson, Nature Nanotechnology, 6, 534 (2011); https://doi.org/10.1038/nnano.2011.145
U. Singh, S. Akhtar, A. Mishra and D. Sarkar, J. Microbiol. Methods, 84, 202 (2011); https://doi.org/10.1016/j.mimet.2010.11.013
S. Sarkar and D. Sarkar, J. Biomol. Screen., 17, 966 (2012); https://doi.org/10.1177/1087057112445485
J.P. Dzoyem, S.K. Guru, C.A. Pieme, V. Kuete, A. Sharma, I.A. Khan, A.K. Saxena and R.A. Vishwakarma, BMC Complement. Altern. Med., 13, 78 (2013); https://doi.org/10.1186/1472-6882-13-78
C.L. Cantrell, I.S. Nuñez, J. Castañeda-Acosta, M. Foroozesh, F.R. Fronczek, N.H. Fischer and S.G. Franzblau, J. Nat. Prod., 61, 1181 (1998); https://doi.org/10.1021/np970333i
S. Kang, R.Y. Kim, M.J. Seo, S. Lee, Y.M. Kim, M. Seo, J.J. Seo, Y. Ko, I. Choi, J. Jang, J. Nam, S. Park, H. Kang, H.J. Kim, J. Kim, S. Ahn, K. Pethe, K. Nam, Z. No and J. Kim, J. Med. Chem., 57, 5293 (2014); https://doi.org/10.1021/jm5003606
A.A. van de Loosdrecht, G.J. Ossenkopele, R.H.J. Beelen, M.G. Broekhoven, M.H. van Of, A.M. Drager, P.C. Huijgens and M.M. Langenhuijsen, Leukemia, 8, 1392 (1994).
M.C. Alley, D.A. Scudiero, A. Monks, M.L. Hursey, M.J. Ciezerwinski and D.L. Fine, Cancer Res., 48, 589 (1988).
G. Ciapetti, E. Cenni, L. Pratelli and A. Pizzoferrato, Biomaterials, 14, 359 (1993); https://doi.org/10.1016/0142-9612(93)90055-7
T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
Triloki, P. Garg, R. Rai and B.K. Singh, Nucl. Instrum. Methods Phys. Res. A, 736, 128 (2014); https://doi.org/10.1016/j.nima.2013.10.075
L.M. Seaverson and J.D. Corbett, Inorg. Chem., 22, 3202 (1983); https://doi.org/10.1021/ic00164a008
Z.W. Mao, K.B. Yu, D. Chen, S.Y. Han, Y.X. Sui and W.X. Tang, Inorg. Chem., 32, 3104 (1993); https://doi.org/10.1021/ic00066a023