Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Ruthenium(II) Nitrosyl Complex of N-Dehydroacetic Acid-Sulfadiazine: Synthesis, DFT Studies and in silico ADME Properties
Corresponding Author(s) : P.K. Vishwakarma
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
A sulpha drug-derived Schiff base ligand N-dehydroacetic acid-sulfadiazine was synthesized by treatment of dehydroacetic acid and sulfadiazine. A mononuclear Ru(II) nitrosyl complex of the Schiff base ligand cis-[RuCl2(NO)(PPh3)(dha-sdz)] was synthesized. The complex was characterized by spectral (IR, 1H NMR and UV/visible) techniques and physico-chemical studies. A cyclic voltammetric technique observed the electrochemistry of the complex compound. Therefore, the Gaussian 09 programme has been used to optimized molecular structure, electronic surface analysis, NLO properties through DFT approaches via mixed basis set at B3LYP/LANL2DZ level of theory. The 1H NMR spectrum of complex compound was computed with the GIAO method and correlated to experimental chemical shift. The TD-DFT based electronic absorption spectrum was computed using the PCM model. Additionally, the synthesized compound was predicting its in silico ADME properties, showing good physico-chemical and bioactivity. Finally, the in vitro antioxidant activity of the studied compound was monitored via two radical scavenging inhibitors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Picón-Pagès, J. Garcia-Buendia and F.J. Muñoz, Biochim. Biophys. Acta Mol. Basis Dis., 1865, 1949 (2019); https://doi.org/10.1016/j.bbadis.2018.11.007
- S. Habib and A. Ali, Indian J. Clin. Biochem., 26, 3 (2011); https://doi.org/10.1007/s12291-011-0108-4
- S. Singh and A.K. Gupta, Cancer Chemother. Pharmakoi., 67, 1211 (2011); https://doi.org/10.1007/s00280-011-1654-4
- T. Nagano and T. Yoshimura, Chem. Rev., 102, 1235 (2002); https://doi.org/10.1021/cr010152s
- M.H. Lim and S.J. Lippard, Acc. Chem. Res., 40, 41 (2007); https://doi.org/10.1021/ar950149t
- C.J. Marmion, B. Cameron, C. Mulcahy and S.P. Fricker, Curr. Top. Med. Chem., 4, 1585 (2004); https://doi.org/10.2174/1568026043387322
- F.G. Marcondes, A.A. Ferro, A. Souza-Torsoni, M. Sumitani, M.J. Clarke, D.W. Franco, E. Tfouni and M.H. Krieger, Life Sci., 70, 2735 (2002); https://doi.org/10.1016/S0024-3205(02)01528-X
- M.J. Rose and P.K. Mascharak, Curr. Opin. Chem. Biol., 12, 238 (2008); https://doi.org/10.1016/j.cbpa.2008.02.009
- P.C. Ford and I.M. Lorkovic, Chem. Rev., 102, 993 (2002); https://doi.org/10.1021/cr0000271
- P.C. Ford, J. Bourassa, K. Miranda, B. Lee, I. Lorkovic, S. Boggs, S. Kudo and L. Laverman, Coord. Chem. Rev., 171, 185 (1998); https://doi.org/10.1016/S0010-8545(98)90031-5
- A.D. Allen, F. Bottomley, R.O. Harris, V.P. Reinsalu and C.V. Senoff, J. Am. Chem. Soc., 89, 5595 (1967); https://doi.org/10.1021/ja00998a016
- C. Creutz and H. Taube, J. Am. Chem. Soc., 95, 1086 (1973); https://doi.org/10.1021/ja00785a016
- D.D. Walker, Ph.D. Dissertation, Stanford University (1980).
- B.R. Cameron, M.C. Darkes, H. Yee, M. Olsen, S.P. Fricker, R.T. Skerlj, G.J. Bridger, N.A. Davies, M.T. Wilson, D.J. Rose and J. Zubieta, Inorg. Chem., 42, 1868 (2003); https://doi.org/10.1021/ic020219+
- S.P. Fricker, Platin. Met. Rev., 39, 150 (1995).
- M. Brindell, I. Stawoska, J. Supel, A. Skoczowski, G. Stochel and R. Van Eldik, J. Biol. Inorg. Chem., 13, 909 (2008); https://doi.org/10.1007/s00775-008-0378-3
- J.M. Mir, R.C. Maurya and P.K. Vishwakarma, Karbala Int. J. Modern Sci., 3, 212 (2017); https://doi.org/10.1016/j.kijoms.2017.08.006
- P.V.R. Rao, K. Srishailam, L. Ravindranath, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1180, 665 (2019); https://doi.org/10.1016/j.molstruc.2018.12.036
- M.A. Palafox, V.B. Jothy, S. Singhal, I.H. Joe, S. Kumar and V.K. Rastogi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 116, 509 (2013); https://doi.org/10.1016/j.saa.2013.07.028
- S.P. Kollur, J.O. Castro, J. Frau and D. Glossman-Mitnik, J. Mol. Struct., 1180, 300 (2019); https://doi.org/10.1016/j.molstruc.2018.11.061
- J.M. Mir, N. Jain, B.A. Malik, R. Chourasia, P.K. Vishwakarma, D.K. Rajak and R.C. Maurya, Inorg. Chim. Acta, 467, 80 (2017); https://doi.org/10.1016/j.ica.2017.07.051
- K. Murugan, S. Vijayapritha, V. Kavitha and P. Viswanathamurthi, Polyhedron, 190, 114737 (2020); https://doi.org/10.1016/j.poly.2020.114737
- W. Selmi, N. Hosni, M. Marchivie, H. Maghraoui-Meherzi and M.F. Zid, J. Mol. Struct., 1228, 129719 (2021); https://doi.org/10.1016/j.molstruc.2020.129719
- J.M. Mir, P.K. Vishwakarma and R.C. Maurya, J. Chin. Adv. Mater. Soc., 6, 55 (2018); https://doi.org/10.1080/22243682.2017.1407669
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, GAUSSIAN 09 (Revision C.01), Gaussian, Inc., Wallingford, CT (2010).
- T.A. Stephenson and G. Wilkinson, J. Inorg. Nucl. Chem., 28, 945 (1966); https://doi.org/10.1016/0022-1902(66)80191-4
- T. Li, S. Li, Y. Dong, R. Zhu and Y. Liu, Food Chem., 145, 335 (2014); https://doi.org/10.1016/j.foodchem.2013.08.036.
- L.C. Green, D.A. Wagner, J. Glogowski, P.L. Skipper, J.K.S.R. Wishnok and S.R. Tannenbaum, Anal. Biochem., 126, 131 (1982); https://doi.org/10.1016/0003-2697(82)90118-X
- L. Marcocci, J.J. Maguire, M.T. Droy-Lefaix and L. Packer, Biochem. Biophys. Res. Commun., 201, 748 (1994); https://doi.org/10.1006/bbrc.1994.1764
- R. Dennington, T. Keith and J. Millam, Gauss View, Version 5, Semichem Inc., Shawnee Mission KS (2009).
- K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
- K. Burke and E.K.U. Gross, Eds.: D. Joubert, A Guided Tour of TimeDependent Density Functional Theory in Density Functionals: Theory and Applications, Springer, pp 500 (1998).
- D. Shoba, S. Periandy, M. Karabacak and S. Ramalingam, Spectrochim. Acta A, 83, 540 (2011); https://doi.org/10.1016/j.saa.2011.09.002
- S.A. Kumar and B.L. Bhaskar, IOP Conf. Series Mater. Sci. Eng., 310, 012124 (2018); https://doi.org/10.1088/1757-899X/310/1/012124
- M.K. Parte, P.K. Vishwakarma, P.S. Jaget and R.C. Maurya, J. Coord. Chem., 74, 584 (2021); https://doi.org/10.1080/00958972.2021.1880574
- A.A. Batista, C. Pereira, K. Wohnrath, S.L. Queiroz, R.H. de A. Santos and M.T. do P. Gambardella, Polyhedron, 18, 2079 (1999); https://doi.org/10.1016/S0277-5387(99)00084-4
- B.L. Haymore and J.A. Ibers, Inorg. Chem., 14, 3060 (1975); https://doi.org/10.1021/ic50154a041
- X. Liu, Z. Wang, X. Wang, G. Zhang, S. Xu, A. Duan, S. Zhang, Z. Sun and D. Xu, Cryst. Growth Des., 8, 2270 (2008); https://doi.org/10.1021/cg7009513
- P.N. Prasad, Polymer, 32, 1746 (1991); https://doi.org/10.1016/0032-3861(91)90357-O
- R. Zhang, B. Du, G. Sun and Y. Sun, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 1115 (2010); https://doi.org/10.1016/j.saa.2009.12.067
- D.A. Kleinman, Phys. Rev., 126, 1977 (1962); https://doi.org/10.1103/PhysRev.126.1977
References
P. Picón-Pagès, J. Garcia-Buendia and F.J. Muñoz, Biochim. Biophys. Acta Mol. Basis Dis., 1865, 1949 (2019); https://doi.org/10.1016/j.bbadis.2018.11.007
S. Habib and A. Ali, Indian J. Clin. Biochem., 26, 3 (2011); https://doi.org/10.1007/s12291-011-0108-4
S. Singh and A.K. Gupta, Cancer Chemother. Pharmakoi., 67, 1211 (2011); https://doi.org/10.1007/s00280-011-1654-4
T. Nagano and T. Yoshimura, Chem. Rev., 102, 1235 (2002); https://doi.org/10.1021/cr010152s
M.H. Lim and S.J. Lippard, Acc. Chem. Res., 40, 41 (2007); https://doi.org/10.1021/ar950149t
C.J. Marmion, B. Cameron, C. Mulcahy and S.P. Fricker, Curr. Top. Med. Chem., 4, 1585 (2004); https://doi.org/10.2174/1568026043387322
F.G. Marcondes, A.A. Ferro, A. Souza-Torsoni, M. Sumitani, M.J. Clarke, D.W. Franco, E. Tfouni and M.H. Krieger, Life Sci., 70, 2735 (2002); https://doi.org/10.1016/S0024-3205(02)01528-X
M.J. Rose and P.K. Mascharak, Curr. Opin. Chem. Biol., 12, 238 (2008); https://doi.org/10.1016/j.cbpa.2008.02.009
P.C. Ford and I.M. Lorkovic, Chem. Rev., 102, 993 (2002); https://doi.org/10.1021/cr0000271
P.C. Ford, J. Bourassa, K. Miranda, B. Lee, I. Lorkovic, S. Boggs, S. Kudo and L. Laverman, Coord. Chem. Rev., 171, 185 (1998); https://doi.org/10.1016/S0010-8545(98)90031-5
A.D. Allen, F. Bottomley, R.O. Harris, V.P. Reinsalu and C.V. Senoff, J. Am. Chem. Soc., 89, 5595 (1967); https://doi.org/10.1021/ja00998a016
C. Creutz and H. Taube, J. Am. Chem. Soc., 95, 1086 (1973); https://doi.org/10.1021/ja00785a016
D.D. Walker, Ph.D. Dissertation, Stanford University (1980).
B.R. Cameron, M.C. Darkes, H. Yee, M. Olsen, S.P. Fricker, R.T. Skerlj, G.J. Bridger, N.A. Davies, M.T. Wilson, D.J. Rose and J. Zubieta, Inorg. Chem., 42, 1868 (2003); https://doi.org/10.1021/ic020219+
S.P. Fricker, Platin. Met. Rev., 39, 150 (1995).
M. Brindell, I. Stawoska, J. Supel, A. Skoczowski, G. Stochel and R. Van Eldik, J. Biol. Inorg. Chem., 13, 909 (2008); https://doi.org/10.1007/s00775-008-0378-3
J.M. Mir, R.C. Maurya and P.K. Vishwakarma, Karbala Int. J. Modern Sci., 3, 212 (2017); https://doi.org/10.1016/j.kijoms.2017.08.006
P.V.R. Rao, K. Srishailam, L. Ravindranath, B.V. Reddy and G.R. Rao, J. Mol. Struct., 1180, 665 (2019); https://doi.org/10.1016/j.molstruc.2018.12.036
M.A. Palafox, V.B. Jothy, S. Singhal, I.H. Joe, S. Kumar and V.K. Rastogi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 116, 509 (2013); https://doi.org/10.1016/j.saa.2013.07.028
S.P. Kollur, J.O. Castro, J. Frau and D. Glossman-Mitnik, J. Mol. Struct., 1180, 300 (2019); https://doi.org/10.1016/j.molstruc.2018.11.061
J.M. Mir, N. Jain, B.A. Malik, R. Chourasia, P.K. Vishwakarma, D.K. Rajak and R.C. Maurya, Inorg. Chim. Acta, 467, 80 (2017); https://doi.org/10.1016/j.ica.2017.07.051
K. Murugan, S. Vijayapritha, V. Kavitha and P. Viswanathamurthi, Polyhedron, 190, 114737 (2020); https://doi.org/10.1016/j.poly.2020.114737
W. Selmi, N. Hosni, M. Marchivie, H. Maghraoui-Meherzi and M.F. Zid, J. Mol. Struct., 1228, 129719 (2021); https://doi.org/10.1016/j.molstruc.2020.129719
J.M. Mir, P.K. Vishwakarma and R.C. Maurya, J. Chin. Adv. Mater. Soc., 6, 55 (2018); https://doi.org/10.1080/22243682.2017.1407669
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, GAUSSIAN 09 (Revision C.01), Gaussian, Inc., Wallingford, CT (2010).
T.A. Stephenson and G. Wilkinson, J. Inorg. Nucl. Chem., 28, 945 (1966); https://doi.org/10.1016/0022-1902(66)80191-4
T. Li, S. Li, Y. Dong, R. Zhu and Y. Liu, Food Chem., 145, 335 (2014); https://doi.org/10.1016/j.foodchem.2013.08.036.
L.C. Green, D.A. Wagner, J. Glogowski, P.L. Skipper, J.K.S.R. Wishnok and S.R. Tannenbaum, Anal. Biochem., 126, 131 (1982); https://doi.org/10.1016/0003-2697(82)90118-X
L. Marcocci, J.J. Maguire, M.T. Droy-Lefaix and L. Packer, Biochem. Biophys. Res. Commun., 201, 748 (1994); https://doi.org/10.1006/bbrc.1994.1764
R. Dennington, T. Keith and J. Millam, Gauss View, Version 5, Semichem Inc., Shawnee Mission KS (2009).
K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
K. Burke and E.K.U. Gross, Eds.: D. Joubert, A Guided Tour of TimeDependent Density Functional Theory in Density Functionals: Theory and Applications, Springer, pp 500 (1998).
D. Shoba, S. Periandy, M. Karabacak and S. Ramalingam, Spectrochim. Acta A, 83, 540 (2011); https://doi.org/10.1016/j.saa.2011.09.002
S.A. Kumar and B.L. Bhaskar, IOP Conf. Series Mater. Sci. Eng., 310, 012124 (2018); https://doi.org/10.1088/1757-899X/310/1/012124
M.K. Parte, P.K. Vishwakarma, P.S. Jaget and R.C. Maurya, J. Coord. Chem., 74, 584 (2021); https://doi.org/10.1080/00958972.2021.1880574
A.A. Batista, C. Pereira, K. Wohnrath, S.L. Queiroz, R.H. de A. Santos and M.T. do P. Gambardella, Polyhedron, 18, 2079 (1999); https://doi.org/10.1016/S0277-5387(99)00084-4
B.L. Haymore and J.A. Ibers, Inorg. Chem., 14, 3060 (1975); https://doi.org/10.1021/ic50154a041
X. Liu, Z. Wang, X. Wang, G. Zhang, S. Xu, A. Duan, S. Zhang, Z. Sun and D. Xu, Cryst. Growth Des., 8, 2270 (2008); https://doi.org/10.1021/cg7009513
P.N. Prasad, Polymer, 32, 1746 (1991); https://doi.org/10.1016/0032-3861(91)90357-O
R. Zhang, B. Du, G. Sun and Y. Sun, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 1115 (2010); https://doi.org/10.1016/j.saa.2009.12.067
D.A. Kleinman, Phys. Rev., 126, 1977 (1962); https://doi.org/10.1103/PhysRev.126.1977