Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Insights into the Intermolecular Hydrogen Bond Effect on ESIHT Process in 2′-Hydroxychalcone: A Combined DFT/TDDFT Study
Corresponding Author(s) : Y.L. Ramu
Asian Journal of Chemistry,
Vol. 34 No. 4 (2022): Vol 34 Issue 4, 2022
Abstract
Present computational study lighting up the ground and excited states properties of 2′-hydroxychalcone (2′-HC) and 2′-HC + (H2O)2-[2′-HCH] molecules by employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT). Furthermore, micro-solvation, hydrogen bond dynamics and natural charge analysis studies have been done for both molecules at ground/excited states by using effective fragment potential (EFP1)/natural bond orbital (NBO) methods at 6-31G(d,p)/B3LYP level. The excited state intra-molecular hydrogen atom transfer (ESIHT) mechanism of 2′-HC was investigated via potential energy scans (PES). No hydrogen atom transfer is observed in the S3 state of 2′-HC and S1/S3 states of 2′-HCH. The optimized molecular structures, molecular orbital’s and electrostatic potential maps were depicted along with UV-Vis absorption spectra. Good consistency between experimental and computational absorption wavelength for a 2′-HC molecule with methanol as solvent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, J. Ding, R. Liu, D. Shi and J. Sun, J. Photochem. Photobiol. Chem., 201, 203 (2009); https://doi.org/10.1016/j.jphotochem.2008.10.016
- P. Zhou, P. Song, J. Liu, K. Han and G. He, Phys. Chem. Chem. Phys., 11, 9440 (2009); https://doi.org/10.1039/b910043a
- E. Pines, D. Pines, Y.Z. Ma and G.R. Fleming, ChemPhysChem, 5, 1315 (2004); https://doi.org/10.1002/cphc.200301004
- E.T.J. Nibbering, H. Fidder and E. Pines, Rev. Phys. Chem., 56, 337 (2005); https://doi.org/10.1146/annurev.physchem.56.092503.141314
- G.J. Zhao and K.L. Han, Acc. Chem. Res., 45, 404 (2012); https://doi.org/10.1021/ar200135h
- G.J. Zhao and K.L. Han, J. Phys. Chem. A, 111, 9218 (2007); https://doi.org/10.1021/jp0719659
- G.J. Zhao, J.Y. Liu, L.C. Zhou and K.L. Han, J. Phys. Chem. B, 111, 8940 (2007); https://doi.org/10.1021/jp0734530
- A. Morimoito, T. Yatsuhashi, T. Shimada, L. Biczók, D.A. Tryk and H. Inoue, J. Phys. Chem. A, 105, 10488 (2001); https://doi.org/10.1021/jp0117213
- L. Biczok, T. Berces and H. Linschitz, J. Am. Chem. Soc., 119, 11071 (1997); https://doi.org/10.1021/ja972071c
- V. Vetokhina, M. Kijak, G. Wiosna-Salyga, R.P. Thummel, J. Herbich and J. Waluk, Photochem. Photobiol. Sci., 9, 923 (2010); https://doi.org/10.1039/c0pp00043d
- G.J. Zhao and K.L. Han, ChemPhysChem, 9, 1842 (2008); https://doi.org/10.1002/cphc.200800371
- K.L. Han and G.J. Zhao, Hydrogen Bonding Transfer in the Excited State. John Wiley & Sons Ltd. (2011).
- G.Y. Li, Y.H. Li, H. Zhang and G.H. Cui, Commun. Comput. Chem., 1, 88 (2013); https://doi.org/10.4208/cicc.2013.v1.n1.9
- G.J. Zhao and K.L. Han, Biophys. J., 94, 38 (2008); https://doi.org/10.1529/biophysj.107.113738
- S. Banerjee, A.K. Both and M. Sarkar, ACS Omega, 3, 15709 (2018); https://doi.org/10.1021/acsomega.8b02232
- H. Wang, M. Wang, E. Liu, M. Xin and C. Yang, Comput. Chem., 964, 243 (2011); https://doi.org/10.1016/j.comptc.2010.12.034
- H. Wang, M. Wang, M. Xin, E. Liu and C. Yang, Cent. Eur. J. Phys., 9, 792 (2011); https://doi.org/10.2478/s11534-010-0099-4
- G. Jones II, W.R. Jackson and A.M. Halpern, Chem. Phys. Lett., 72, 391 (1980); https://doi.org/10.1016/0009-2614(80)80314-9
- M.J. Kamlet, C. Dickinson and R.W. Taft, Chem. Phys. Lett., 77, 69 (1981); https://doi.org/10.1016/0009-2614(81)85602-3
- P. Arora, L.V. Slipchenko, S.P. Webb, A. DeFusco and M.S. Gordon, J. Phys. Chem. A, 114, 6742 (2010); https://doi.org/10.1021/jp101780r
- N. De Silva and F. Zahariev, J. Chem. Phys., 134, 54111 (2011); https://doi.org/10.1063/1.3523578
- S. Yoo, F. Zahariev, S. Sok and M.S. Gordon, J. Chem. Phys., 129, 144112 (2008); https://doi.org/10.1063/1.2992049
- P.N. Day, J.H. Jensen, M.S. Gordon, S.P. Webb, W.J. Stevens, M. Krauss, D. Garmer, H. Basch and D. Cohen, J. Chem. Phys., 105, 1968 (1996); https://doi.org/10.1063/1.472045
- M.S. Gordon, M.A. Freitag, P. Bandyopadhyay, J.H. Jensen, V. Kairys and W.J. Stevens, J. Phys. Chem. A, 105, 293 (2001); https://doi.org/10.1021/jp002747h
- M.A. Adamovic, M.A. Freitag and M.S. Gordon, J. Chem. Phys., 118, 6725 (2003); https://doi.org/10.1063/1.1559912
- J.H. Jensen and M.S. Gordon, J. Chem. Phys., 108, 4772 (1998); https://doi.org/10.1063/1.475888
- K. Goyal, R. Kaur, A. Goyal and R. Awasthi, J. Appl. Pharm. Sci., 11, 1 (2021); https://doi.org/10.7324/JAPS.2021.11s101
- H. Koudokpon, N. Armstrong, T.V. Dougnon, L. Fah and J.M. Rolain, BioMed Res. Int., 2018, 1453173 (2018); https://doi.org/10.1155/2018/1453173
- D. Elkhalifa, I. Al-Hashimi, A.-E. Al-Moustafa and A. Khalil, J. Drug Target., 29, 403 (2021); https://doi.org/10.1080/1061186X.2020.1853759
- M. Xu, P. Wu, F. Shan, J. Ji and K.P. Rakesh, Bioorg. Chem., 91, 103133 (2019); https://doi.org/10.1016/j.bioorg.2019.103133
- S.-M. Yun, S.-H. Kim and E.-H. Kim, Front. Pharmacol., 10, 162 (2019); https://doi.org/10.3389/fphar.2019.00162
- Y. Xue, Y. Zheng, L. Zhang, W. Wu, D. Yu and Y. Liu, J. Mol. Model., 19, 3851 (2013); https://doi.org/10.1007/s00894-013-1921-x
- F.-W. Wang, S.-Q. Wang, B.-X. Zhao and J.-Y. Miao, Org. Biomol. Chem., 12, 3062 (2014); https://doi.org/10.1039/C3OB42429D
- M. Dommetta and R. Crespo-Otero, Phys. Chem. Chem. Phys., 19, 2409 (2016); https://doi.org/10.1039/C6CP07541J
- C. Simmler, A. Hajirahimkhan, D.C. Lankin, J.L. Bolton, T. Jones, D.D. Soejarto, S.-N. Chen and G.F. Pauli, J. Agric. Food Chem., 61, 2146 (2013); https://doi.org/10.1021/jf304445p
- M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
- W. Kohn, A.D. Becke and R.G. Parr, J. Phys. Chem., 100, 12974 (1996); https://doi.org/10.1021/jp960669l
- K. Kim and K.D. Jordan, J. Phys. Chem., 98, 10089 (1994); https://doi.org/10.1021/j100091a024
- P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch, J. Phys. Chem., 98, 11623 (1994); https://doi.org/10.1021/j100096a001
- A.D. Becke, J. Chem. Phys., 109, 2092 (1998); https://doi.org/10.1063/1.476722
- S. Tokura, T. Sato, T. Tsuneda, T. Nakajima and K.J. Hirao, Comput. Chem., 29, 1187 (2008); https://doi.org/10.1002/jcc.20871
- M. Chiba, T. Tsuneda and K. Hirao, J. Chem. Phys., 124, 144106 (2006); https://doi.org/10.1063/1.2186995
- A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
- F. Furche and R. Ahlrichs, J. Chem. Phys., 121, 12772 (2004); https://doi.org/10.1063/1.1824903
- D. Si and H. Li, J. Chem. Phys., 133, 144112 (2010); https://doi.org/10.1063/1.3491814
- J. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 105, 9982 (1996); https://doi.org/10.1063/1.472933
- E.D. Glendening, C.R. Landis and F. Weinhold, Comput. Mol. Sci., 2, 1 (2012); https://doi.org/10.1002/wcms.51
- M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem., 14, 1347 (1993); https://doi.org/10.1002/jcc.540141112
- M.S. Gordon and M.W. Schmidt, Eds.: In: C.E. Dykstra, G. Frenking, K.S. Kim and G.E. Scuseria,Advances in Electronic Structure Theory: GAMESS A Decade Later; In: Theory and Applications of Computational Chemistry: The First Forty Years, Elsevier, Amsterdam, Ed. 1, pp. 1167-1189 (2005).
- P.C. Hariharan and J.A. Pople, Theor. Chim. Acta, 28, 213 (1973); https://doi.org/10.1007/BF00533485
- F. Leonard, A. Wajngurt, M. Klein and C.M. Smith, J. Org. Chem., 26, 4062 (1961); https://doi.org/10.1021/jo01068a101
References
Y. Liu, J. Ding, R. Liu, D. Shi and J. Sun, J. Photochem. Photobiol. Chem., 201, 203 (2009); https://doi.org/10.1016/j.jphotochem.2008.10.016
P. Zhou, P. Song, J. Liu, K. Han and G. He, Phys. Chem. Chem. Phys., 11, 9440 (2009); https://doi.org/10.1039/b910043a
E. Pines, D. Pines, Y.Z. Ma and G.R. Fleming, ChemPhysChem, 5, 1315 (2004); https://doi.org/10.1002/cphc.200301004
E.T.J. Nibbering, H. Fidder and E. Pines, Rev. Phys. Chem., 56, 337 (2005); https://doi.org/10.1146/annurev.physchem.56.092503.141314
G.J. Zhao and K.L. Han, Acc. Chem. Res., 45, 404 (2012); https://doi.org/10.1021/ar200135h
G.J. Zhao and K.L. Han, J. Phys. Chem. A, 111, 9218 (2007); https://doi.org/10.1021/jp0719659
G.J. Zhao, J.Y. Liu, L.C. Zhou and K.L. Han, J. Phys. Chem. B, 111, 8940 (2007); https://doi.org/10.1021/jp0734530
A. Morimoito, T. Yatsuhashi, T. Shimada, L. Biczók, D.A. Tryk and H. Inoue, J. Phys. Chem. A, 105, 10488 (2001); https://doi.org/10.1021/jp0117213
L. Biczok, T. Berces and H. Linschitz, J. Am. Chem. Soc., 119, 11071 (1997); https://doi.org/10.1021/ja972071c
V. Vetokhina, M. Kijak, G. Wiosna-Salyga, R.P. Thummel, J. Herbich and J. Waluk, Photochem. Photobiol. Sci., 9, 923 (2010); https://doi.org/10.1039/c0pp00043d
G.J. Zhao and K.L. Han, ChemPhysChem, 9, 1842 (2008); https://doi.org/10.1002/cphc.200800371
K.L. Han and G.J. Zhao, Hydrogen Bonding Transfer in the Excited State. John Wiley & Sons Ltd. (2011).
G.Y. Li, Y.H. Li, H. Zhang and G.H. Cui, Commun. Comput. Chem., 1, 88 (2013); https://doi.org/10.4208/cicc.2013.v1.n1.9
G.J. Zhao and K.L. Han, Biophys. J., 94, 38 (2008); https://doi.org/10.1529/biophysj.107.113738
S. Banerjee, A.K. Both and M. Sarkar, ACS Omega, 3, 15709 (2018); https://doi.org/10.1021/acsomega.8b02232
H. Wang, M. Wang, E. Liu, M. Xin and C. Yang, Comput. Chem., 964, 243 (2011); https://doi.org/10.1016/j.comptc.2010.12.034
H. Wang, M. Wang, M. Xin, E. Liu and C. Yang, Cent. Eur. J. Phys., 9, 792 (2011); https://doi.org/10.2478/s11534-010-0099-4
G. Jones II, W.R. Jackson and A.M. Halpern, Chem. Phys. Lett., 72, 391 (1980); https://doi.org/10.1016/0009-2614(80)80314-9
M.J. Kamlet, C. Dickinson and R.W. Taft, Chem. Phys. Lett., 77, 69 (1981); https://doi.org/10.1016/0009-2614(81)85602-3
P. Arora, L.V. Slipchenko, S.P. Webb, A. DeFusco and M.S. Gordon, J. Phys. Chem. A, 114, 6742 (2010); https://doi.org/10.1021/jp101780r
N. De Silva and F. Zahariev, J. Chem. Phys., 134, 54111 (2011); https://doi.org/10.1063/1.3523578
S. Yoo, F. Zahariev, S. Sok and M.S. Gordon, J. Chem. Phys., 129, 144112 (2008); https://doi.org/10.1063/1.2992049
P.N. Day, J.H. Jensen, M.S. Gordon, S.P. Webb, W.J. Stevens, M. Krauss, D. Garmer, H. Basch and D. Cohen, J. Chem. Phys., 105, 1968 (1996); https://doi.org/10.1063/1.472045
M.S. Gordon, M.A. Freitag, P. Bandyopadhyay, J.H. Jensen, V. Kairys and W.J. Stevens, J. Phys. Chem. A, 105, 293 (2001); https://doi.org/10.1021/jp002747h
M.A. Adamovic, M.A. Freitag and M.S. Gordon, J. Chem. Phys., 118, 6725 (2003); https://doi.org/10.1063/1.1559912
J.H. Jensen and M.S. Gordon, J. Chem. Phys., 108, 4772 (1998); https://doi.org/10.1063/1.475888
K. Goyal, R. Kaur, A. Goyal and R. Awasthi, J. Appl. Pharm. Sci., 11, 1 (2021); https://doi.org/10.7324/JAPS.2021.11s101
H. Koudokpon, N. Armstrong, T.V. Dougnon, L. Fah and J.M. Rolain, BioMed Res. Int., 2018, 1453173 (2018); https://doi.org/10.1155/2018/1453173
D. Elkhalifa, I. Al-Hashimi, A.-E. Al-Moustafa and A. Khalil, J. Drug Target., 29, 403 (2021); https://doi.org/10.1080/1061186X.2020.1853759
M. Xu, P. Wu, F. Shan, J. Ji and K.P. Rakesh, Bioorg. Chem., 91, 103133 (2019); https://doi.org/10.1016/j.bioorg.2019.103133
S.-M. Yun, S.-H. Kim and E.-H. Kim, Front. Pharmacol., 10, 162 (2019); https://doi.org/10.3389/fphar.2019.00162
Y. Xue, Y. Zheng, L. Zhang, W. Wu, D. Yu and Y. Liu, J. Mol. Model., 19, 3851 (2013); https://doi.org/10.1007/s00894-013-1921-x
F.-W. Wang, S.-Q. Wang, B.-X. Zhao and J.-Y. Miao, Org. Biomol. Chem., 12, 3062 (2014); https://doi.org/10.1039/C3OB42429D
M. Dommetta and R. Crespo-Otero, Phys. Chem. Chem. Phys., 19, 2409 (2016); https://doi.org/10.1039/C6CP07541J
C. Simmler, A. Hajirahimkhan, D.C. Lankin, J.L. Bolton, T. Jones, D.D. Soejarto, S.-N. Chen and G.F. Pauli, J. Agric. Food Chem., 61, 2146 (2013); https://doi.org/10.1021/jf304445p
M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
W. Kohn, A.D. Becke and R.G. Parr, J. Phys. Chem., 100, 12974 (1996); https://doi.org/10.1021/jp960669l
K. Kim and K.D. Jordan, J. Phys. Chem., 98, 10089 (1994); https://doi.org/10.1021/j100091a024
P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch, J. Phys. Chem., 98, 11623 (1994); https://doi.org/10.1021/j100096a001
A.D. Becke, J. Chem. Phys., 109, 2092 (1998); https://doi.org/10.1063/1.476722
S. Tokura, T. Sato, T. Tsuneda, T. Nakajima and K.J. Hirao, Comput. Chem., 29, 1187 (2008); https://doi.org/10.1002/jcc.20871
M. Chiba, T. Tsuneda and K. Hirao, J. Chem. Phys., 124, 144106 (2006); https://doi.org/10.1063/1.2186995
A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
F. Furche and R. Ahlrichs, J. Chem. Phys., 121, 12772 (2004); https://doi.org/10.1063/1.1824903
D. Si and H. Li, J. Chem. Phys., 133, 144112 (2010); https://doi.org/10.1063/1.3491814
J. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 105, 9982 (1996); https://doi.org/10.1063/1.472933
E.D. Glendening, C.R. Landis and F. Weinhold, Comput. Mol. Sci., 2, 1 (2012); https://doi.org/10.1002/wcms.51
M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem., 14, 1347 (1993); https://doi.org/10.1002/jcc.540141112
M.S. Gordon and M.W. Schmidt, Eds.: In: C.E. Dykstra, G. Frenking, K.S. Kim and G.E. Scuseria,Advances in Electronic Structure Theory: GAMESS A Decade Later; In: Theory and Applications of Computational Chemistry: The First Forty Years, Elsevier, Amsterdam, Ed. 1, pp. 1167-1189 (2005).
P.C. Hariharan and J.A. Pople, Theor. Chim. Acta, 28, 213 (1973); https://doi.org/10.1007/BF00533485
F. Leonard, A. Wajngurt, M. Klein and C.M. Smith, J. Org. Chem., 26, 4062 (1961); https://doi.org/10.1021/jo01068a101