Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis Docking Studies and Antitubercular Activity of Ofloxacin Scaffold using Blanc Reaction
Corresponding Author(s) : C. Ramakrishna
Asian Journal of Chemistry,
Vol. 34 No. 3 (2022): Vol 34 Issue 3, 2022
Abstract
Synthesis, molecular docking and characterization of ofloxacin derivatives and in vitro evaluation for their antitubercular action were carried out. Synthesis ofloxacin derivatives viz. O+TRI, O+MEL, O+NAP, O+SUL, O+METF, O+IBU, O+ASP, O+DNP, O+SSA, O+PH, O+MC (where TRI = trimethoprim, MEL = meloxicam, NAP = naproxen, SUL = sulfamethoxazole, METF = metformin, IBU = ibuprofen, ASP = aspirin, DNP = 2,4-dinitrophenyl hydrazine, SSA = 5-sulpho salicylic acid, PH = phenyl hydrazine, MC = 7-hydroxy-4-methyl coumarin) were carried using Blanc reaction and purified by using of ethanol by recrystallization. The reaction products consist of methylene group linkage between two moieties and the molecules were characterized by analytical methods TLC, solubility, melting point, spectroscopic methods (FT-IR, mass and 1H NMR, 13C NMR). In silico methods were adopted for synthetic derivatives by Autodock vina software. Determined physico-chemical parameters (in silico studies) and docking studies have been performed using protein (5BS8) with designed ligands, binding energy scores were noted for different derivatives. Derivatives O+TRI, O+NAP shown good activity at 0.8 μg/mL. In docking studies, all the compounds shown promising results when compared to standard drugs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.D.M. Pham, Z.M. Ziora and M.A.T. Blaskovich, MedChemComm.,10, 1719 (2019); https://doi.org/10.1039/c9md00120d
- A. Rusu, I.-A. Lungu, O.-L. Moldovan, C. Tanase and G. Hancu, Pharmaceutics, 13, 1289 (2021); https://doi.org/10.3390/pharmaceutics13081289
- P.C. Sharma, Acta Polon. Pharm. Drug Res., 66, 587 (2009).
- Y. Dundar, M. Ülger, F.K. Onurdag, S. Ökten and T. Önkol, Rev. Roum. Chim., 63, 265 (2018).
- M.S. Mulani, E.E. Kamble, S.N. Kumkar, M.S. Tawre and K.R. Pardesi Front. Microbiol., 10, 539 (2019); https://doi.org/10.3389/fmicb.2019.00539
- S.A. Hasan, N.H. Nasser, A.K. Hussein, A.H. Abdulsada, Z.M. Jasim, S.H. Shaalan and H.K. Musai, J. Pharm. Sci. Res., 10, 3061 (2018).
- A.D. Pranger, T.S. van der Werf, J.G.W. Kosterink and J.W.C. Alffenaar, Drugs, 79, 161 (2019); https://doi.org/10.1007/s40265-018-1043-y
- P.C. Sharma, R. Kumar, M. Chaudhary, A. Sharma and H. Rajak, J. Enzyme Inhib. Med. Chem., 28, 1 (2013); https://doi.org/10.3109/14756366.2011.611943
- D.C. Hooper and G.A. Jacoby, Cold Spring Harb. Perspect. Med., 6, a025320 (2016) https://doi.org/10.1101/cshperspect.a025320
- K.J. Aldred, R.J. Kerns and N. Osheroff, Biochemistry, 53, 1565 (2014); https://doi.org/10.1021/bi5000564
- N. Sultana, Bull. Korean Chem. Soc., 30, 2294 (2009); https://doi.org/10.5012/bkcs.2009.30.10.2294
- J. Fedorowicz and J. Saczewski, Monatsh. Chem., 149, 1199 (2018); https://doi.org/10.1007/s00706-018-2215-x
- N. Mohammadhosseini, Z. Alipanahi, E. Alipour, S. Emami, M.A. Faramarzi, N. Samadi, N. Khoshnevis, A. Shafiee and A. Foroumadi, DARU J. Pharm. Sci., 20, 16 (2012); https://doi.org/10.1186/2008-2231-20-16
- S. Vacher, J.L. Pellegrin, F. Leblanc, J. Fourche and J. Maugein, J. Antimicrob. Chemother., 44, 647 (1999); https://doi.org/10.1093/jac/44.5.647
- I. Hayakawa, S. Atarashi, S. Yokohama, M. Imamura, K. Sakano and M. Furukawa, Antimicrob. Agents Chemother., 29, 163 (1986); https://doi.org/10.1128/AAC.29.1.163
- W.W. Yew, C.K. Chan, C.C. Leung, C.H. Chau, C.M. Tam, P.C. Wong and J. Lee, Chest J., 124, 1476 (2003); https://doi.org/10.1378/chest.124.4.1476
- C.S. Lewin, R.A. Allen and S.G.B. Amyes, J. Med. Microbiol., 33, 127 (1990); https://doi.org/10.1099/00222615-33-2-127
- F. Afreen, R. Chakraborty and A. Thakur, Int. J. Pharm. Chem., 5, 352 (2015).
- M.S. Arayne, N. Sultana, U. Haroon, M.H. Zuberi, S.B.S. Rizvi, Arch. Pharm. Res., 33, 1901 (2010); https://doi.org/10.1007/s12272-010-1203-4
- N. Sultana, M.S. Arayne, S.B.S. Rizvi and M.A. Mesaik, Bull. Korean Chem. Soc., 30, 2294 (2009); https://doi.org/10.5012/bkcs.2009.30.10.2294
- M.C. Lourenco, M.V.N. Souza, A.C. Pinheiro, M.L. Ferreira, R.S.B. Gonçalves, T.C.M. Nogueira and M.A. Peralta, ARKIVOC, 181 (2007); https://doi.org/10.3998/ark.5550190.0008.f18
- BIOVIA Dassault Systems, Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systems (2016).
References
T.D.M. Pham, Z.M. Ziora and M.A.T. Blaskovich, MedChemComm.,10, 1719 (2019); https://doi.org/10.1039/c9md00120d
A. Rusu, I.-A. Lungu, O.-L. Moldovan, C. Tanase and G. Hancu, Pharmaceutics, 13, 1289 (2021); https://doi.org/10.3390/pharmaceutics13081289
P.C. Sharma, Acta Polon. Pharm. Drug Res., 66, 587 (2009).
Y. Dundar, M. Ülger, F.K. Onurdag, S. Ökten and T. Önkol, Rev. Roum. Chim., 63, 265 (2018).
M.S. Mulani, E.E. Kamble, S.N. Kumkar, M.S. Tawre and K.R. Pardesi Front. Microbiol., 10, 539 (2019); https://doi.org/10.3389/fmicb.2019.00539
S.A. Hasan, N.H. Nasser, A.K. Hussein, A.H. Abdulsada, Z.M. Jasim, S.H. Shaalan and H.K. Musai, J. Pharm. Sci. Res., 10, 3061 (2018).
A.D. Pranger, T.S. van der Werf, J.G.W. Kosterink and J.W.C. Alffenaar, Drugs, 79, 161 (2019); https://doi.org/10.1007/s40265-018-1043-y
P.C. Sharma, R. Kumar, M. Chaudhary, A. Sharma and H. Rajak, J. Enzyme Inhib. Med. Chem., 28, 1 (2013); https://doi.org/10.3109/14756366.2011.611943
D.C. Hooper and G.A. Jacoby, Cold Spring Harb. Perspect. Med., 6, a025320 (2016) https://doi.org/10.1101/cshperspect.a025320
K.J. Aldred, R.J. Kerns and N. Osheroff, Biochemistry, 53, 1565 (2014); https://doi.org/10.1021/bi5000564
N. Sultana, Bull. Korean Chem. Soc., 30, 2294 (2009); https://doi.org/10.5012/bkcs.2009.30.10.2294
J. Fedorowicz and J. Saczewski, Monatsh. Chem., 149, 1199 (2018); https://doi.org/10.1007/s00706-018-2215-x
N. Mohammadhosseini, Z. Alipanahi, E. Alipour, S. Emami, M.A. Faramarzi, N. Samadi, N. Khoshnevis, A. Shafiee and A. Foroumadi, DARU J. Pharm. Sci., 20, 16 (2012); https://doi.org/10.1186/2008-2231-20-16
S. Vacher, J.L. Pellegrin, F. Leblanc, J. Fourche and J. Maugein, J. Antimicrob. Chemother., 44, 647 (1999); https://doi.org/10.1093/jac/44.5.647
I. Hayakawa, S. Atarashi, S. Yokohama, M. Imamura, K. Sakano and M. Furukawa, Antimicrob. Agents Chemother., 29, 163 (1986); https://doi.org/10.1128/AAC.29.1.163
W.W. Yew, C.K. Chan, C.C. Leung, C.H. Chau, C.M. Tam, P.C. Wong and J. Lee, Chest J., 124, 1476 (2003); https://doi.org/10.1378/chest.124.4.1476
C.S. Lewin, R.A. Allen and S.G.B. Amyes, J. Med. Microbiol., 33, 127 (1990); https://doi.org/10.1099/00222615-33-2-127
F. Afreen, R. Chakraborty and A. Thakur, Int. J. Pharm. Chem., 5, 352 (2015).
M.S. Arayne, N. Sultana, U. Haroon, M.H. Zuberi, S.B.S. Rizvi, Arch. Pharm. Res., 33, 1901 (2010); https://doi.org/10.1007/s12272-010-1203-4
N. Sultana, M.S. Arayne, S.B.S. Rizvi and M.A. Mesaik, Bull. Korean Chem. Soc., 30, 2294 (2009); https://doi.org/10.5012/bkcs.2009.30.10.2294
M.C. Lourenco, M.V.N. Souza, A.C. Pinheiro, M.L. Ferreira, R.S.B. Gonçalves, T.C.M. Nogueira and M.A. Peralta, ARKIVOC, 181 (2007); https://doi.org/10.3998/ark.5550190.0008.f18
BIOVIA Dassault Systems, Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systems (2016).