Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxygenation of Substituted (Phenylthio)acetic Acids by Acidic Bromate: A Kinetic and Mechanistic Study and Validity of Linear Free-Energy Relationships
Corresponding Author(s) : Ch. Sanjeeva Reddy
Asian Journal of Chemistry,
Vol. 34 No. 3 (2022): Vol 34 Issue 3, 2022
Abstract
Kinetics and mechanistic investigations on the oxygenation of (phenylthio)acetic acid and its substituted compounds using bromate in acid medium have been carried out. The reaction exhibited first-order in [bromate], 1.6 order in [H2SO4], less than one order in [substrate] and displayed solvent isotopic effect of 1.75 (kD2O/kH2O). The reaction rate is not affected by ionic strength variation, however, enhanced by lowering dielectric constant of the medium. Structural modifications in the aryl moiety of the substrate resulted in a change of reactivity, where electron-seeking substituents decreased the reaction rate. The order of reactivity among the studied substrates is para-methoxy > para-methyl > -H > para-chloro ≈ para-bromo > para-nitro(phenylthio)acetic acid and showed an excellent correlation between rate constant and the Hammett substituent constant (σ value). The reaction constant (ρ) value is negative (-1.37 at 303 K) and decreased by increase in the reaction temperature. Proposed mechanism involves decomposition of the complex formed between acid bromate and the substrate. Based on the proposed mechanism, an appropriate rate law has been derived and tested for its validity. Activation parameters and isokinetic temperature have been evaluated and discussed. The validity of linear free-energy relationships have been discussed thoroughly.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.J. Pasto and R. Kent, J. Org. Chem., 30, 2684 (1965); https://doi.org/10.1021/jo01019a042
- K.S. Webb, Tetrahedron Lett., 35, 3457 (1994); https://doi.org/10.1016/S0040-4039(00)73209-6
- C. Srinivasan and K. Pitchiumani, Indian J. Chem., 17A, 162 (1979).
- G. Panigrahi and R.N. Nayak, Curr. Sci., 49, 740 (1980).
- C. Srinivasan and K. Pitchumani, Int. J. Chem. Kinet., 14, 789 (1982); https://doi.org/10.1002/kin.550140707
- S. Kabilan, K. Pandiarajan, K. Krishnasamy and P. Sankar, Int. J. Chem. Kinet., 27, 443 (1995); https://doi.org/10.1002/kin.550270504
- C. Karunakaran, V. Ramachandran and P.N. Palanisamy, Int. J. Chem. Kinet., 31, 675 (1999); https://doi.org/10.1002/(SICI)1097-4601(1999)31:9<675::AIDKIN8>3.0.CO;2-H
- N.M.I. Alhaj, A.M. Uduman Mohideen and S.S. Lawrence Mary, E-J. Chem., 8, 159 (2011); https://doi.org/10.1155/2011/342409
- N. Vijayalaxmi and E.V. Sundaram, Indian J. Chem., 17A, 495 (1979).
- S. Narayana and V.S. Srinivasan, Indian J. Chem., 26A, 110 (1987).
- K. Chipiso and R.H. Simoyi, Aust. J. Chem., 69, 1305 (2016); https://doi.org/10.1071/CH16050
- R.A. Adigun, M. Mhike, W. Mbiya, S.B. Jonnalagadda and R.H. Simoyi, J. Phys. Chem. A, 118, 2196 (2014); https://doi.org/10.1021/jp411790v
- W. Mbiya, B. Choi, B.S. Martincigh, M.K. Morakinyo and R.H. Simoyi, J. Phys. Chem. A, 117, 13059 (2013); https://doi.org/10.1021/jp408304e
- O. Olagunju and R.H. Simoyi, J. Phys. Chem. A, 12, 6366 (2017); https://doi.org/10.1021/acs.jpca.7b07587
- Ch. Sanjeeva Reddy and E.V. Sundaram, Tetrahedron, 45, 2109 (1989); https://doi.org/10.1016/S0040-4020(01)80072-7
- Ch. Sanjeeva Reddy and T. Vijayakumar, Indian J. Chem., 35A, 408 (1996).
- Ch. Sanjeeva Reddy and T. Vijayakumar, Transition Met. Chem., 32, 246 (2007); https://doi.org/10.1007/s11243-006-0156-4
- C.S. Reddy and P.S. Manjari, J. Mol. Catal. Chem., 328, 76 (2010); https://doi.org/10.1016/j.molcata.2010.06.002
- P.S. Manjari and C.S. Reddy, Transition Met. Chem., 36, 707 (2011); https://doi.org/10.1007/s11243-011-9523-x
- A. Chellamani and P. Sengu, J. Mol. Catal. Chem., 283, 83 (2008); https://doi.org/10.1016/j.molcata.2007.12.004
- K.B. Wiberg, Physical Organic Chemistry, Wiley: New York (1964).
- C.J. Collins and N.S. Bowman, Isotopic Effects in Chemical Reactions, Van Nostrand- Reinhold: New York (1970).
- L. Liu and Q.X. Guo, Chem. Rev., 101, 673 (2001); https://doi.org/10.1021/cr990416z
- P.K. Sharma, Asian J. Chem., 26, 2702 (2014); https://doi.org/10.14233/ajchem.2014.16081
- A. Indelli, G. Nolan Jr. and E.S. Amis, J. Am. Chem. Soc., 82, 3233 (1960); https://doi.org/10.1021/ja01498a001
- M. Anbar and S. Guttmann, J. Am. Chem. Soc., 83, 4741 (1961); https://doi.org/10.1021/ja01484a013
- C.A. Wright and A.F.M. Barton, J. Chem. Soc. A, 1747 (1968); https://doi.org/10.1039/J19680001747
- G. Rábai, G. Bazsa and M.T. Beck, Int. J. Chem. Kinet., 13, 1277 (1981); https://doi.org/10.1002/kin.550131207
- D.G. Lee and T. Chen, J. Org. Chem., 56, 5346 (1991); https://doi.org/10.1021/jo00018a026
- A. Chellamani, N. Ismail Alhaji, S. Rajagopal, R. Sevvel and C. Srinivasan, Tetrahedron, 51, 12677 (1995); https://doi.org/10.1016/0040-4020(95)00825-S
- Y. Goto, T. Matsui, S. Ozaki, Y. Watanabe and S. Fukuzumi, J. Am. Chem. Soc., 121, 9497 (1999); https://doi.org/10.1021/ja9901359
- E.S. Lewis, Investigation of Rates and Mechanisms of Reactions, Wiley: New York, Eds.: 3, p. 415 (1974).
- O. Exner, Chem. Commun., 17, 1655 (2000); https://doi.org/10.1039/b002758h
- O. Exner, Collect. Czech. Chem. Commun., 29, 1094 (1964); https://doi.org/10.1135/cccc19641094
- F. Ruff and A.J. Kucsman, J. Chem. Soc., Perkin Trans. II, 5, 683 (1985); https://doi.org/10.1039/p29850000683
- K. Nagajyothi, P.S. Raghavan and R. Gopalan, Asian J. Chem., 22, 839 (2010).
References
D.J. Pasto and R. Kent, J. Org. Chem., 30, 2684 (1965); https://doi.org/10.1021/jo01019a042
K.S. Webb, Tetrahedron Lett., 35, 3457 (1994); https://doi.org/10.1016/S0040-4039(00)73209-6
C. Srinivasan and K. Pitchiumani, Indian J. Chem., 17A, 162 (1979).
G. Panigrahi and R.N. Nayak, Curr. Sci., 49, 740 (1980).
C. Srinivasan and K. Pitchumani, Int. J. Chem. Kinet., 14, 789 (1982); https://doi.org/10.1002/kin.550140707
S. Kabilan, K. Pandiarajan, K. Krishnasamy and P. Sankar, Int. J. Chem. Kinet., 27, 443 (1995); https://doi.org/10.1002/kin.550270504
C. Karunakaran, V. Ramachandran and P.N. Palanisamy, Int. J. Chem. Kinet., 31, 675 (1999); https://doi.org/10.1002/(SICI)1097-4601(1999)31:9<675::AIDKIN8>3.0.CO;2-H
N.M.I. Alhaj, A.M. Uduman Mohideen and S.S. Lawrence Mary, E-J. Chem., 8, 159 (2011); https://doi.org/10.1155/2011/342409
N. Vijayalaxmi and E.V. Sundaram, Indian J. Chem., 17A, 495 (1979).
S. Narayana and V.S. Srinivasan, Indian J. Chem., 26A, 110 (1987).
K. Chipiso and R.H. Simoyi, Aust. J. Chem., 69, 1305 (2016); https://doi.org/10.1071/CH16050
R.A. Adigun, M. Mhike, W. Mbiya, S.B. Jonnalagadda and R.H. Simoyi, J. Phys. Chem. A, 118, 2196 (2014); https://doi.org/10.1021/jp411790v
W. Mbiya, B. Choi, B.S. Martincigh, M.K. Morakinyo and R.H. Simoyi, J. Phys. Chem. A, 117, 13059 (2013); https://doi.org/10.1021/jp408304e
O. Olagunju and R.H. Simoyi, J. Phys. Chem. A, 12, 6366 (2017); https://doi.org/10.1021/acs.jpca.7b07587
Ch. Sanjeeva Reddy and E.V. Sundaram, Tetrahedron, 45, 2109 (1989); https://doi.org/10.1016/S0040-4020(01)80072-7
Ch. Sanjeeva Reddy and T. Vijayakumar, Indian J. Chem., 35A, 408 (1996).
Ch. Sanjeeva Reddy and T. Vijayakumar, Transition Met. Chem., 32, 246 (2007); https://doi.org/10.1007/s11243-006-0156-4
C.S. Reddy and P.S. Manjari, J. Mol. Catal. Chem., 328, 76 (2010); https://doi.org/10.1016/j.molcata.2010.06.002
P.S. Manjari and C.S. Reddy, Transition Met. Chem., 36, 707 (2011); https://doi.org/10.1007/s11243-011-9523-x
A. Chellamani and P. Sengu, J. Mol. Catal. Chem., 283, 83 (2008); https://doi.org/10.1016/j.molcata.2007.12.004
K.B. Wiberg, Physical Organic Chemistry, Wiley: New York (1964).
C.J. Collins and N.S. Bowman, Isotopic Effects in Chemical Reactions, Van Nostrand- Reinhold: New York (1970).
L. Liu and Q.X. Guo, Chem. Rev., 101, 673 (2001); https://doi.org/10.1021/cr990416z
P.K. Sharma, Asian J. Chem., 26, 2702 (2014); https://doi.org/10.14233/ajchem.2014.16081
A. Indelli, G. Nolan Jr. and E.S. Amis, J. Am. Chem. Soc., 82, 3233 (1960); https://doi.org/10.1021/ja01498a001
M. Anbar and S. Guttmann, J. Am. Chem. Soc., 83, 4741 (1961); https://doi.org/10.1021/ja01484a013
C.A. Wright and A.F.M. Barton, J. Chem. Soc. A, 1747 (1968); https://doi.org/10.1039/J19680001747
G. Rábai, G. Bazsa and M.T. Beck, Int. J. Chem. Kinet., 13, 1277 (1981); https://doi.org/10.1002/kin.550131207
D.G. Lee and T. Chen, J. Org. Chem., 56, 5346 (1991); https://doi.org/10.1021/jo00018a026
A. Chellamani, N. Ismail Alhaji, S. Rajagopal, R. Sevvel and C. Srinivasan, Tetrahedron, 51, 12677 (1995); https://doi.org/10.1016/0040-4020(95)00825-S
Y. Goto, T. Matsui, S. Ozaki, Y. Watanabe and S. Fukuzumi, J. Am. Chem. Soc., 121, 9497 (1999); https://doi.org/10.1021/ja9901359
E.S. Lewis, Investigation of Rates and Mechanisms of Reactions, Wiley: New York, Eds.: 3, p. 415 (1974).
O. Exner, Chem. Commun., 17, 1655 (2000); https://doi.org/10.1039/b002758h
O. Exner, Collect. Czech. Chem. Commun., 29, 1094 (1964); https://doi.org/10.1135/cccc19641094
F. Ruff and A.J. Kucsman, J. Chem. Soc., Perkin Trans. II, 5, 683 (1985); https://doi.org/10.1039/p29850000683
K. Nagajyothi, P.S. Raghavan and R. Gopalan, Asian J. Chem., 22, 839 (2010).