Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ultrasonic Investigation of Viscoelastic Properties in Silver Nanofluids
Corresponding Author(s) : G. Little Flower
Asian Journal of Chemistry,
Vol. 34 No. 3 (2022): Vol 34 Issue 3, 2022
Abstract
Silver nanofluids have been prepared by a one-step simple, green and cost-effective method using tannic acid as both reducing and stabilizing agent. The physical parameters such as ultrasonic velocity, density and viscosity of silver nanofluids were measured at (298.15 K, 303.15 K, 308.15 K and 313.15 K) and derived parameters like adiabatic compressibility (β), mean free path (Lmfp), bulk modulus (E), ultrasonic attenuation coefficient (α/f2), diffusion coefficient (D) and relaxation time (t) were computed. The variation of ultrasonic velocity with temperature, concentration and frequency shows anomalous behaviour and the parameters β, Lmfp, E too reflected this behaviour. Viscosity variation as a function of temperature and concentration is also studied and correlated with particle size. Ultrasonic attenuation coefficient (α/f2), diffusion coefficient and relaxation time exhibited a similar pattern as that of viscosity of samples confirming the significant role of viscosity in transport phenomena and flow characteristics of fluids. Results are interpreted in terms of nanoparticle-nanoparticle and nanoparticle-fluid interactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Sajeeb and P.K.J. Rajendrakumar, Engin. Tribology, 234, 1940 (2020); https://doi.org/10.1177/1350650119899208
- J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne and M.K. Danquah, Beilstein J. Nanotechnol., 9, 1050 (2018); https://doi.org/10.3762/bjnano.9.98
- B. Bakthavatchalam, K. Habib, R. Saidur, B.B. Saha and K. Irshad, J. Mol. Liq., 305, 112787 (2020); https://doi.org/10.1016/j.molliq.2020.112787
- N. Ali, A.M. Bahman, N.F. Aljuwayhel, S.A. Ebrahim, S. Mukherjee and A. Alsayegh, Nanomaterials, 11, 1628 (2021); https://doi.org/10.3390/nano11061628
- S. Alfei, A.M. Schito and G. Zuccari, Polymers, 13, 2262 (2021); https://doi.org/10.3390/polym13142262
- J. Pulit-Prociak and M. Banach, Open Chem., 14, 76 (2016); https://doi.org/10.1515/chem-2016-0005
- P. Rauwel, E. Rauwel, S. Ferdov and M.P. Singh, Adv. Mater. Sci. Eng., 2015, 624394 (2015); https://doi.org/10.1155/2015/624394
- R. Vaidyanathan, K. Kalishwaralal, S. Gopalram and S. Gurunathan, Biotechnol. Adv., 27, 924 (2009); https://doi.org/10.1016/j.biotechadv.2009.08.001
- N. Duran, P.D. Marcato, G.I.H. De Souza, O.L. Alves and E. Esposito, J. Biomed. Nanotechnol., 3, 203 (2007); https://doi.org/10.1166/jbn.2007.022
- M.G. Guzman, J. Dille and S. Godet, World Acad. Sci. Eng. Technol., 43, 357 (2008).
- A.J. Haes, W.P. Hall, L. Chang, W.L. Klein and R.P. Van Duyne, Nano Lett., 4, 1029 (2004); https://doi.org/10.1021/nl049670j
- J. Fong and F. Wood, Int. J. Nanomedicine, 1, 441 (2006); https://doi.org/10.2147/nano.2006.1.4.441
- V.P. Zharov, E.N. Galitovskaya, C. Johnson and T. Kelly, Lasers Surg. Med., 37, 219 (2005); https://doi.org/10.1002/lsm.20223
- A. Torres-Martínez, B. Bedrina, E. Falomir, M.J. Marín, C.A. AnguloPachón, F. Galindo and J.F. Miravet, ACS Appl. Bio Mater., 4, 3658 (2021); https://doi.org/10.1021/acsabm.1c00139
- A.D. McFarland and R.P. Van Duyne, Nano Lett., 3, 1057 (2003); https://doi.org/10.1021/nl034372s
- P.K. Jain, X. Huang, I.H. El-Sayed and M.A. El Sayed, Acc. Chem. Res., 41, 1578 (2008); https://doi.org/10.1021/ar7002804
- K.S. Lee and M.A. El-Sayed, J. Phys. Chem. B, 110, 19220 (2006); https://doi.org/10.1021/jp062536y
- N. Sarfraz and I. Khan, Chem. Asian J., 16, 720 (2021); https://doi.org/10.1002/asia.202001202
- W. Lesniak, A.U. Bielinska, K. Sun, K.W. Janczak, X. Shi, J.R. Baker and L.P. Balogh, Nano Lett., 5, 2123 (2005); https://doi.org/10.1021/nl051077u
- H.R. Stuart and D.G. Hall, Appl. Phys. Lett., 73, 3815 (1998); https://doi.org/10.1063/1.122903
- S. Pillai, K.R. Catchpole, T. Trupke and M.A. Green, J. Appl. Phys., 101, 093105 (2007); https://doi.org/10.1063/1.2734885
- K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida and T. Watanabe, J. Am. Chem. Soc., 130, 1676 (2008); https://doi.org/10.1021/ja076503n
- S.A. Joseph, M. Hari, S. Mathew, G. Sharma, V. Soumya, V.M. Hadiya, P. Radhakrishnan and V.P.N. Nampoori, Opt. Commun., 283, 313 (2010); https://doi.org/10.1016/j.optcom.2009.10.016
- P. Warrier and A. Teja, Nanoscale Res. Lett., 6, 247 (2011); https://doi.org/10.1186/1556-276X-6-247
- Q. Li, J. Zhao, L. Jin and D. Li, ACS Omega, 5, 13052 (2020); https://doi.org/10.1021/acsomega.0c00964
- F. Cataldo, O. Ursini and G. Angelini, Eur. Chem. Bull., 2, 700 (2013).
- G. Mishra, S. Verma, D. Singh, P. Yadawa and R. Yadav, Open J. Acoust., 1, 9 (2011); https://doi.org/10.4236/oja.2011.11002
- R.R. Yadav, G. Mishra, P.K. Yadawa, S.K. Kor, A.K. Gupta, B. Raj and T. Jayakumar, Ultrasonics, 48, 591 (2008); https://doi.org/10.1016/j.ultras.2008.06.008
- A. Józefczak and A. Skumiel, J. Magn. Magn. Mater., 323, 1509 (2011); https://doi.org/10.1016/j.jmmm.2011.01.009
- M.J. Pastoriza-Gallego, C. Casanova, R. Páramo, B. Barbés, J.L. Legido and M.M. Piñeiro, J. Appl. Phys., 106, 064301 (2009); https://doi.org/10.1063/1.3187732
- S. Thomas and C.B.P. Sobhan, Nanoscale Res. Lett., 6, 377 (2011); https://doi.org/10.1186/1556-276X-6-377
- M.J. Pastoriza-Gallego, L. Lugo, J.L. Legido and M.M. Piñeiro, Nanoscale Res. Lett., 6, 221 (2011); https://doi.org/10.1186/1556-276X-6-221
- G.L. Flower, S.V. Latha and K.V. Rao, J. Mol. Liq., 221, 333 (2016); https://doi.org/10.1016/j.molliq.2016.06.017
- M.J. Pastoriza-Gallego, C. Casanova, J.L. Legido and M.M. Pineiro, Fluid Phase Equilib., 300, 188 (2011); https://doi.org/10.1016/j.fluid.2010.10.015
- P.K. Namburu, D.P. Kulkarni, A. Dandekar and D.K. Das, Micro & Nano Letters, IET, 2, 67 (2007); https://doi.org/10.1049/mnl:20070037
- M.H. Esfe and S. Saedodin, J. Therm. Anal. Calorim., 119, 1205 (2015); https://doi.org/10.1007/s10973-014-4197-1
- Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu, Int. J. Heat Mass Transf., 50, 2272 (2007); https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024
- A. Graham, Appl. Sci. Res., 37, 275 (1981); https://doi.org/10.1007/BF00951252
- C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher and H.A. Mintsa, Int. J. Heat Fluid Flow, 28, 1492 (2007); https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004
- V.Ya. Rudyak, Adv. Nanopart., 2, 266 (2013); https://doi.org/10.4236/anp.2013.23037
- V.Ya. Rudyak and A.A. Belkin, Thermophys. Aeromech., 11, 54 (2004).
- V.Ya. Rudyak, J. Appl. Ind. Math., 8, 120 (2005).
- J. Chevalier, O. Tillement and F. Ayela, Appl. Phys. Lett., 91, 233103 (2007); https://doi.org/10.1063/1.2821117
- E.V. Timofeeva, D.S. Smith, W. Yu, D.M. France, D. Singh and J.L. Routbort, Nanotechnology, 21, 215703 (2010); https://doi.org/10.1088/0957-4484/21/21/215703
- P. Prasher, D. Song, J. Wang and P. Phelan, Appl. Phys. Lett., 89, 133108 (2006); https://doi.org/10.1063/1.2356113
- M. Moosavi, E.K. Goharshadi and A. Youssefi, Int. J. Heat Fluid Flow, 31, 599 (2010); https://doi.org/10.1016/j.ijheatfluidflow.2010.01.011
- L.S. Sundar, E.V. Ramana, M.K. Singh and A.C.M. Sousa, Chem. Phys. Lett., 554, 236 (2012); https://doi.org/10.1016/j.cplett.2012.10.042
References
A. Sajeeb and P.K.J. Rajendrakumar, Engin. Tribology, 234, 1940 (2020); https://doi.org/10.1177/1350650119899208
J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne and M.K. Danquah, Beilstein J. Nanotechnol., 9, 1050 (2018); https://doi.org/10.3762/bjnano.9.98
B. Bakthavatchalam, K. Habib, R. Saidur, B.B. Saha and K. Irshad, J. Mol. Liq., 305, 112787 (2020); https://doi.org/10.1016/j.molliq.2020.112787
N. Ali, A.M. Bahman, N.F. Aljuwayhel, S.A. Ebrahim, S. Mukherjee and A. Alsayegh, Nanomaterials, 11, 1628 (2021); https://doi.org/10.3390/nano11061628
S. Alfei, A.M. Schito and G. Zuccari, Polymers, 13, 2262 (2021); https://doi.org/10.3390/polym13142262
J. Pulit-Prociak and M. Banach, Open Chem., 14, 76 (2016); https://doi.org/10.1515/chem-2016-0005
P. Rauwel, E. Rauwel, S. Ferdov and M.P. Singh, Adv. Mater. Sci. Eng., 2015, 624394 (2015); https://doi.org/10.1155/2015/624394
R. Vaidyanathan, K. Kalishwaralal, S. Gopalram and S. Gurunathan, Biotechnol. Adv., 27, 924 (2009); https://doi.org/10.1016/j.biotechadv.2009.08.001
N. Duran, P.D. Marcato, G.I.H. De Souza, O.L. Alves and E. Esposito, J. Biomed. Nanotechnol., 3, 203 (2007); https://doi.org/10.1166/jbn.2007.022
M.G. Guzman, J. Dille and S. Godet, World Acad. Sci. Eng. Technol., 43, 357 (2008).
A.J. Haes, W.P. Hall, L. Chang, W.L. Klein and R.P. Van Duyne, Nano Lett., 4, 1029 (2004); https://doi.org/10.1021/nl049670j
J. Fong and F. Wood, Int. J. Nanomedicine, 1, 441 (2006); https://doi.org/10.2147/nano.2006.1.4.441
V.P. Zharov, E.N. Galitovskaya, C. Johnson and T. Kelly, Lasers Surg. Med., 37, 219 (2005); https://doi.org/10.1002/lsm.20223
A. Torres-Martínez, B. Bedrina, E. Falomir, M.J. Marín, C.A. AnguloPachón, F. Galindo and J.F. Miravet, ACS Appl. Bio Mater., 4, 3658 (2021); https://doi.org/10.1021/acsabm.1c00139
A.D. McFarland and R.P. Van Duyne, Nano Lett., 3, 1057 (2003); https://doi.org/10.1021/nl034372s
P.K. Jain, X. Huang, I.H. El-Sayed and M.A. El Sayed, Acc. Chem. Res., 41, 1578 (2008); https://doi.org/10.1021/ar7002804
K.S. Lee and M.A. El-Sayed, J. Phys. Chem. B, 110, 19220 (2006); https://doi.org/10.1021/jp062536y
N. Sarfraz and I. Khan, Chem. Asian J., 16, 720 (2021); https://doi.org/10.1002/asia.202001202
W. Lesniak, A.U. Bielinska, K. Sun, K.W. Janczak, X. Shi, J.R. Baker and L.P. Balogh, Nano Lett., 5, 2123 (2005); https://doi.org/10.1021/nl051077u
H.R. Stuart and D.G. Hall, Appl. Phys. Lett., 73, 3815 (1998); https://doi.org/10.1063/1.122903
S. Pillai, K.R. Catchpole, T. Trupke and M.A. Green, J. Appl. Phys., 101, 093105 (2007); https://doi.org/10.1063/1.2734885
K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida and T. Watanabe, J. Am. Chem. Soc., 130, 1676 (2008); https://doi.org/10.1021/ja076503n
S.A. Joseph, M. Hari, S. Mathew, G. Sharma, V. Soumya, V.M. Hadiya, P. Radhakrishnan and V.P.N. Nampoori, Opt. Commun., 283, 313 (2010); https://doi.org/10.1016/j.optcom.2009.10.016
P. Warrier and A. Teja, Nanoscale Res. Lett., 6, 247 (2011); https://doi.org/10.1186/1556-276X-6-247
Q. Li, J. Zhao, L. Jin and D. Li, ACS Omega, 5, 13052 (2020); https://doi.org/10.1021/acsomega.0c00964
F. Cataldo, O. Ursini and G. Angelini, Eur. Chem. Bull., 2, 700 (2013).
G. Mishra, S. Verma, D. Singh, P. Yadawa and R. Yadav, Open J. Acoust., 1, 9 (2011); https://doi.org/10.4236/oja.2011.11002
R.R. Yadav, G. Mishra, P.K. Yadawa, S.K. Kor, A.K. Gupta, B. Raj and T. Jayakumar, Ultrasonics, 48, 591 (2008); https://doi.org/10.1016/j.ultras.2008.06.008
A. Józefczak and A. Skumiel, J. Magn. Magn. Mater., 323, 1509 (2011); https://doi.org/10.1016/j.jmmm.2011.01.009
M.J. Pastoriza-Gallego, C. Casanova, R. Páramo, B. Barbés, J.L. Legido and M.M. Piñeiro, J. Appl. Phys., 106, 064301 (2009); https://doi.org/10.1063/1.3187732
S. Thomas and C.B.P. Sobhan, Nanoscale Res. Lett., 6, 377 (2011); https://doi.org/10.1186/1556-276X-6-377
M.J. Pastoriza-Gallego, L. Lugo, J.L. Legido and M.M. Piñeiro, Nanoscale Res. Lett., 6, 221 (2011); https://doi.org/10.1186/1556-276X-6-221
G.L. Flower, S.V. Latha and K.V. Rao, J. Mol. Liq., 221, 333 (2016); https://doi.org/10.1016/j.molliq.2016.06.017
M.J. Pastoriza-Gallego, C. Casanova, J.L. Legido and M.M. Pineiro, Fluid Phase Equilib., 300, 188 (2011); https://doi.org/10.1016/j.fluid.2010.10.015
P.K. Namburu, D.P. Kulkarni, A. Dandekar and D.K. Das, Micro & Nano Letters, IET, 2, 67 (2007); https://doi.org/10.1049/mnl:20070037
M.H. Esfe and S. Saedodin, J. Therm. Anal. Calorim., 119, 1205 (2015); https://doi.org/10.1007/s10973-014-4197-1
Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu, Int. J. Heat Mass Transf., 50, 2272 (2007); https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024
A. Graham, Appl. Sci. Res., 37, 275 (1981); https://doi.org/10.1007/BF00951252
C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher and H.A. Mintsa, Int. J. Heat Fluid Flow, 28, 1492 (2007); https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004
V.Ya. Rudyak, Adv. Nanopart., 2, 266 (2013); https://doi.org/10.4236/anp.2013.23037
V.Ya. Rudyak and A.A. Belkin, Thermophys. Aeromech., 11, 54 (2004).
V.Ya. Rudyak, J. Appl. Ind. Math., 8, 120 (2005).
J. Chevalier, O. Tillement and F. Ayela, Appl. Phys. Lett., 91, 233103 (2007); https://doi.org/10.1063/1.2821117
E.V. Timofeeva, D.S. Smith, W. Yu, D.M. France, D. Singh and J.L. Routbort, Nanotechnology, 21, 215703 (2010); https://doi.org/10.1088/0957-4484/21/21/215703
P. Prasher, D. Song, J. Wang and P. Phelan, Appl. Phys. Lett., 89, 133108 (2006); https://doi.org/10.1063/1.2356113
M. Moosavi, E.K. Goharshadi and A. Youssefi, Int. J. Heat Fluid Flow, 31, 599 (2010); https://doi.org/10.1016/j.ijheatfluidflow.2010.01.011
L.S. Sundar, E.V. Ramana, M.K. Singh and A.C.M. Sousa, Chem. Phys. Lett., 554, 236 (2012); https://doi.org/10.1016/j.cplett.2012.10.042