Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optical Absorption, Kinetics and Thermodynamic Studies of Pr(III) and Nd(III) Ions with N-Acetyl L-Cysteine in Presence of Ca(II) ions
Corresponding Author(s) : Thiyam David Singh
Asian Journal of Chemistry,
Vol. 34 No. 2 (2022): Vol 34 Issue 2
Abstract
Interaction of N-acetyl-L-cysteine (NAC) with Pr3+ (Pr(NO3)3·6H2O) and Nd3+ (Nd(NO3)3·6H2O) ions are studied in presence of Ca2+ (Ca(NO3)3·4H2O) ion in an aqueous and organic solvent by applying the spectroscopic technique for quantitative probe of 4f-4f transition. The complexation was determined by the variation in the intensities of 4f-4f absorption spectral bands and by applying the change of symmetric properties of electronic-dipole known as Judd-Ofelt parameters Tλ (λ = 2,4,6). On the addition of Ca2+ ion in the binary complexation of praseodymium and neodymium with N-acetyl-L-cysteine (NAC) there is an intensification of bands which shows the effect of Ca2+ toward the heterobimetallic complex formation. Other parameters like Slater-Condon (Fk), bonding (b1/2), the Nephelauxetic ratio (β), percentage covalency (δ) are also used to correlate the complexation of metals with N-acetyl-L-cysteine (NAC). With the minor change in coordination around Pr3+ and Nd3+ ions, the sensitivity of 4f-4f bands is detected and further used to explain the coordination of N-acetyl-L-cysteine (NAC) with Pr3+ and Nd3+ in presence of Ca2+. The variation in oscillator strength (Pobs), energy (Eobs) and dipole intensity parameter help in supporting the heterobimetallic complexation of N-acetyl-L-cysteine. In kinetics investigation, the rate of the complexation of both hypersensitive and pseudo-hypersensitive transition is evaluated at various temperature in DMF solvent. The value of the thermodynamic parameters such as ΔH°, ΔS° and ΔG° and activation energy (Ea) also evaluated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. De Vries and S. De Flora, J. Cell. Biochem., 53(S17F), 270 (1993); https://doi.org/10.1002/jcb.240531040
- J.A. Cotruvo Jr, ACS Cent. Sci., 5, 1496 (2019); https://doi.org/10.1021/acscentsci.9b00642
- A. Kothari and S.N. Misra, Can. J. Chem., 61, 1778 (1983); https://doi.org/10.1139/v83-304
- S.N. Misra and K. John, J. Appl. Spectrosc. Rev., 28, 285 (1993); https://doi.org/10.1080/05704929308018115
- N. Bendangsenla, T. Moaienla, Th. David Singh, Ch. Sumitra, N. Rajmuhon Singh and M. Indira Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 103, 160 (2013); https://doi.org/10.1016/j.saa.2012.11.011
- J. Legendziewicz, H. Kozlowski, B. Jezowska-Trzebiatowska and E. Huskowska, Inorg. Nucl. Chem. Lett., 15, 349 (1979); https://doi.org/10.1016/0020-1650(79)80109-9
- K. Bukietynska and A. Mondry, Inorg. Chim. Acta, 130, 145 (1987); https://doi.org/10.1016/S0020 1693(00)85944-7
- B. Huidrom, N. Ranjana Devi, Th. Devid Singh and N. Rajmuhon Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 85, 127 (2012); https://doi.org/10.1016/j.saa.2011.09.045
- R.C. Holz and L.C. Thompson, Inorg. Chem., 27, 4640 (1988); https://doi.org/10.1021/ic00298a027
- M.T. Devlin, E.M. Stephens and F.S. Richardson, Inorg. Chem., 27, 1517 (1988); https://doi.org/10.1021/ic00282a003
- G.H. Brittain, F.S. Richardson and R.B. Martin, J. Am. Chem. Soc., 98, 8255 (1976); https://doi.org/10.1021/ja00441a060
- D.E. Henrie and G.R. Choppin, J. Chem. Phys., 49, 477 (1968); https://doi.org/10.1063/1.1670099
- S.P. Sinha, Spectrochim. Acta A, 22, 57 (1966); https://doi.org/10.1016/0371-1951(66)80008-5
- W.T. Carnall, R.P. Fields and B.G. Wybourne, J. Chem. Phys., 42, 3797 (1965); https://doi.org/10.1063/1.1695840
- T.D. Singh, C. Sumitra, N. Yaiphaba, H.D. Devi, M.I. Devi and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 1219 (2005); https://doi.org/10.1016/j.saa.2004.06.044
- L. Di Sipio, E. Tondell, G. De Michelis and L. Oleari, Inorg. Chem., 9, 927 (1970); https://doi.org/10.1021/ic50086a047
- S.P. Tandon and P.C. Mehta, J. Chem. Phys., 52, 5417 (1970); https://doi.org/10.1063/1.1672792
- E.Y. Wong, J. Chem. Phys., 38, 976 (1963); https://doi.org/10.1063/1.1733794
- I. Richman and E.Y. Wong, J. Chem. Phys., 37, 2270 (1962); https://doi.org/10.1063/1.1732998
- W.D. Horrocks Jr. and D.R. Sudnick, Acc. Chem. Res., 14, 384 (1981); https://doi.org/10.1021/ar00072a004
- G.S. Ofelt, J. Chem. Phys., 37, 511 (1962); https://doi.org/10.1063/1.1701366
- S.F. Mason, R.D. Peacock and B. Stewart, Mol. Phys., 30, 1829 (1975); https://doi.org/10.1080/00268977500103321
- S.N. Misra, G. Ramchandriah, M.A. Gagnani, R.M. Shukla and M. Indira Devi, Appl. Spectrosc. Rev., 38, 433 (2003); https://doi.org/10.1081/ASR-120026330
- G. Lakshminarayana, H. Yang and J. Qiu, J. Alloys Compd., 475, 569 (2009); https://doi.org/10.1016/j.jallcom.2008.07.083
- A.D. Sherry and E. Pascual, J. Am. Chem. Soc., 99, 5871 (1977); https://doi.org/10.1021/ja00460a004
- T. Moaienla, T.D. Singh, N.R. Singh and M.I. Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 74, 434 (2009); https://doi.org/10.1016/j.saa.2009.06.039
- T. Moaienla, N. Bendangsenla, Th. David Singh, Ch. Sumitra, N. Rajmuhon Singh and M. Indira Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 87, 142 (2012); https://doi.org/10.1016/j.saa.2011.11.028
- S.N. Misra and M.I. Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 53, 1941 (1997); https://doi.org/10.1016/S1386-1425(97)00064-4
- C.K. Jorgensen and B.R. Judd, Mol. Phys., 8, 281 (1964); https://doi.org/10.1080/00268976400100321
- D.G. Karraker, Inorg. Chem., 6, 1863 (1967); https://doi.org/10.1021/ic50056a022
- S.N. Misra and S.O. Sommerer, Appl. Spectrosc. Rev., 26, 151 (1991); https://doi.org/10.1080/05704929108050880
- C.V. Devi and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 1180 (2011); https://doi.org/10.1016/j.saa.2010.12.078
- W.T. Carnall, P.R. Fields and K. Rajnak, J. Chem. Phys., 49, 4412 (1968); https://doi.org/10.1063/1.1669892
- P.P. Corbi, F. Cagnin and A.C. Massabni, J. Coord. Chem., 61, 3666 (2008); https://doi.org/10.1080/00958970802108809
- B.B. Ivanova, V.D. Simeonov, M.G. Arnaudov and D.L. Tsalev, Spectrochim. Acta A Mol. Biomol. Spectrosc., 67, 66 (2007); https://doi.org/10.1016/j.saa.2006.06.025
- P. Carette and A. Hocquet, J. Mol. Spectrosc., 131, 301 (1988); https://doi.org/10.1016/0022-2852(88)90241-X
- L.W. Zhang, K. Wang and X.X. Zhang, Anal. Chim. Acta, 603, 101 (2007); https://doi.org/10.1016/j.aca.2007.09.021
References
N. De Vries and S. De Flora, J. Cell. Biochem., 53(S17F), 270 (1993); https://doi.org/10.1002/jcb.240531040
J.A. Cotruvo Jr, ACS Cent. Sci., 5, 1496 (2019); https://doi.org/10.1021/acscentsci.9b00642
A. Kothari and S.N. Misra, Can. J. Chem., 61, 1778 (1983); https://doi.org/10.1139/v83-304
S.N. Misra and K. John, J. Appl. Spectrosc. Rev., 28, 285 (1993); https://doi.org/10.1080/05704929308018115
N. Bendangsenla, T. Moaienla, Th. David Singh, Ch. Sumitra, N. Rajmuhon Singh and M. Indira Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 103, 160 (2013); https://doi.org/10.1016/j.saa.2012.11.011
J. Legendziewicz, H. Kozlowski, B. Jezowska-Trzebiatowska and E. Huskowska, Inorg. Nucl. Chem. Lett., 15, 349 (1979); https://doi.org/10.1016/0020-1650(79)80109-9
K. Bukietynska and A. Mondry, Inorg. Chim. Acta, 130, 145 (1987); https://doi.org/10.1016/S0020 1693(00)85944-7
B. Huidrom, N. Ranjana Devi, Th. Devid Singh and N. Rajmuhon Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 85, 127 (2012); https://doi.org/10.1016/j.saa.2011.09.045
R.C. Holz and L.C. Thompson, Inorg. Chem., 27, 4640 (1988); https://doi.org/10.1021/ic00298a027
M.T. Devlin, E.M. Stephens and F.S. Richardson, Inorg. Chem., 27, 1517 (1988); https://doi.org/10.1021/ic00282a003
G.H. Brittain, F.S. Richardson and R.B. Martin, J. Am. Chem. Soc., 98, 8255 (1976); https://doi.org/10.1021/ja00441a060
D.E. Henrie and G.R. Choppin, J. Chem. Phys., 49, 477 (1968); https://doi.org/10.1063/1.1670099
S.P. Sinha, Spectrochim. Acta A, 22, 57 (1966); https://doi.org/10.1016/0371-1951(66)80008-5
W.T. Carnall, R.P. Fields and B.G. Wybourne, J. Chem. Phys., 42, 3797 (1965); https://doi.org/10.1063/1.1695840
T.D. Singh, C. Sumitra, N. Yaiphaba, H.D. Devi, M.I. Devi and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 1219 (2005); https://doi.org/10.1016/j.saa.2004.06.044
L. Di Sipio, E. Tondell, G. De Michelis and L. Oleari, Inorg. Chem., 9, 927 (1970); https://doi.org/10.1021/ic50086a047
S.P. Tandon and P.C. Mehta, J. Chem. Phys., 52, 5417 (1970); https://doi.org/10.1063/1.1672792
E.Y. Wong, J. Chem. Phys., 38, 976 (1963); https://doi.org/10.1063/1.1733794
I. Richman and E.Y. Wong, J. Chem. Phys., 37, 2270 (1962); https://doi.org/10.1063/1.1732998
W.D. Horrocks Jr. and D.R. Sudnick, Acc. Chem. Res., 14, 384 (1981); https://doi.org/10.1021/ar00072a004
G.S. Ofelt, J. Chem. Phys., 37, 511 (1962); https://doi.org/10.1063/1.1701366
S.F. Mason, R.D. Peacock and B. Stewart, Mol. Phys., 30, 1829 (1975); https://doi.org/10.1080/00268977500103321
S.N. Misra, G. Ramchandriah, M.A. Gagnani, R.M. Shukla and M. Indira Devi, Appl. Spectrosc. Rev., 38, 433 (2003); https://doi.org/10.1081/ASR-120026330
G. Lakshminarayana, H. Yang and J. Qiu, J. Alloys Compd., 475, 569 (2009); https://doi.org/10.1016/j.jallcom.2008.07.083
A.D. Sherry and E. Pascual, J. Am. Chem. Soc., 99, 5871 (1977); https://doi.org/10.1021/ja00460a004
T. Moaienla, T.D. Singh, N.R. Singh and M.I. Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 74, 434 (2009); https://doi.org/10.1016/j.saa.2009.06.039
T. Moaienla, N. Bendangsenla, Th. David Singh, Ch. Sumitra, N. Rajmuhon Singh and M. Indira Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 87, 142 (2012); https://doi.org/10.1016/j.saa.2011.11.028
S.N. Misra and M.I. Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 53, 1941 (1997); https://doi.org/10.1016/S1386-1425(97)00064-4
C.K. Jorgensen and B.R. Judd, Mol. Phys., 8, 281 (1964); https://doi.org/10.1080/00268976400100321
D.G. Karraker, Inorg. Chem., 6, 1863 (1967); https://doi.org/10.1021/ic50056a022
S.N. Misra and S.O. Sommerer, Appl. Spectrosc. Rev., 26, 151 (1991); https://doi.org/10.1080/05704929108050880
C.V. Devi and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 1180 (2011); https://doi.org/10.1016/j.saa.2010.12.078
W.T. Carnall, P.R. Fields and K. Rajnak, J. Chem. Phys., 49, 4412 (1968); https://doi.org/10.1063/1.1669892
P.P. Corbi, F. Cagnin and A.C. Massabni, J. Coord. Chem., 61, 3666 (2008); https://doi.org/10.1080/00958970802108809
B.B. Ivanova, V.D. Simeonov, M.G. Arnaudov and D.L. Tsalev, Spectrochim. Acta A Mol. Biomol. Spectrosc., 67, 66 (2007); https://doi.org/10.1016/j.saa.2006.06.025
P. Carette and A. Hocquet, J. Mol. Spectrosc., 131, 301 (1988); https://doi.org/10.1016/0022-2852(88)90241-X
L.W. Zhang, K. Wang and X.X. Zhang, Anal. Chim. Acta, 603, 101 (2007); https://doi.org/10.1016/j.aca.2007.09.021