Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Production of Bacterial Cellulose by Acetobacter tropicalis Isolated from Decaying Apple Waste
Corresponding Author(s) : Lakhvinder Kaur
Asian Journal of Chemistry,
Vol. 34 No. 2 (2022): Vol 34 Issue 2
Abstract
Fruits and vegetables have the highest wastage rates of 45% of any food. One of the recent research areas is food waste valorization as a potential alternative to the disposal of a wide range of organic waste using microorganisms as one of the strategies known as microbial valorization. Bacterial cellulose is best known microbial valorization product because of its low cost, environmentally friendly nature, renewability, nanoscale dimensions, biocompatibility and extremely high hydrophilicity. Therefore, present study focuses on the isolation, characterization and identification of cellulose producing bacteria from decaying apple waste. Cellulose producers were isolated from decaying apple waste. The bacterial isolates obtained were identified through the morphological biochemical, physiological and molecular identification. The bacterial isolates exhibited potential remediation options to biovalorize decaying fruit waste by producing value added products as well as in safe disposal of waste.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.R. Chawla, I.B. Bajaj and S.A. Survase, Food Technol. Biotechnol., 47, 107 (2009).
- R.M. Brown Jr., J. Polym. Sci. A Polym. Chem., 42, 487 (2004); https://doi.org/10.1002/pola.10877
- M. Shoda and Y. Sugano, Biotechnol. Bioprocess Eng., 10, 1 (2005); https://doi.org/10.1007/BF02931175
- J.Y. Jung, J.K. Park and H.N. Chang, Enzyme Microb. Technol., 37, 347 (2005); https://doi.org/10.1016/j.enzmictec.2005.02.019
- H. Toyosaki, T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida and F. Yoshinaga, Biosci. Biotechnol. Biochem., 59, 1498 (1995); https://doi.org/10.1271/bbb.59.1498
- P. Lisdiyanti, H. Kawasaki, T. Seki, Y. Yamada, T. Uchimura and K. Komagata, J. Gen. Appl. Microbiol., 47, 119 (2001); https://doi.org/10.2323/jgam.47.119
- F. Dellaglio, I. Cleenwerck, G.E. Felis, K. Engelbeen, D. Janssens and M. Marzotto, Int. J. Syst. Evol. Microbiol., 55, 2365 (2005); https://doi.org/10.1099/ijs.0.63301-0
- P. Ross, R. Mayer and M. Benziman, Microbiol. Rev., 55, 35 (1991); https://doi.org/10.1128/mr.55.1.35 58.1991
- B. McKenna, D. Mikkelsen, J. Wehr, M. Gidley and N. Menzies, Cellulose, 16, 1047 (2009); https://doi.org/10.1007/s10570-009-9340-y
- D. Klemm, D. Schumann, U. Udhardt and S. Marsch, Prog. Polym. Sci., 26, 1561 (2001); https://doi.org/10.1016/S0079-6700(01)00021-1
- W. Czaja, A. Krystynowicz, S. Bielecki and R. Brownjr, Biomaterials, 27, 145 (2006); https://doi.org/10.1016/j.biomaterials.2005.07.035
- I.M. Ida, P. Norhayati and Z. Khairul, Eds.: M.W. Wasim and K. Prasad, Bacterial Cellulose as Secondary Metabolite: Production, Processing and Applications. In: Plant Secondary Metabolites: Biological and Therapeutic Significance, Apple Academic Press, CRC: USA, vol. 1, pp 169-200 (2016).
- R. Jonas and L.F. Farah, Polym. Degrad. Stab., 59, 101 (1998); https://doi.org/10.1016/S0141 3910(97)00197-3
- S. Hestrin and M. Schramm, Biochem. J., 58, 345 (1954); https://doi.org/10.1042/bj0580345
- R.M.A. Gallardo De Jesus and T.M. Elvira, Philipp. J. Sci., 100, 41 (1971).
- J.G. Holt, N.R. Krieg, P.H. Sneath, J.T. Staley and S.T. Williams, Bergey’s Manual of Determinative Bacteriology, Ed.: 9 (2004).
- P. Loganathan, R. Sunita, A.K. Parida and S. Nair, J. Appl. Microbiol., 87, 167 (1999); https://doi.org/10.1046/j.1365-2672.1999.00804.x
- J. Trèek, K. Jernejc and K. Matsushita, Extremophiles, 11, 627 (2007); https://doi.org/10.1007/s00792 007-0077-y
- P. Yukphan, T. Malimas, M. Takahashi, W. Potacharoen, T. Busabun, S. Tanasupawat, Y. Nakagawa, M. Tanticharoen and Y. Yamada, J. Gen. Appl. Microbiol., 50, 189 (2004); https://doi.org/10.2323/jgam.50.189
- D.L. Jozef, G. Monique and S. Jeans, Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins Publishing: USA, pp. 267-274 (1986).
- F. Jahan, V. Kumar, G. Rawat and R.K. Saxena, Appl. Biochem. Biotechnol., 167, 1157 (2012); https://doi.org/10.1007/s12010-012-9595-x
- P. Lisdiyanti, H. Kawasaki, T. Seki, Y. Yamada, T. Uchimura and K. Komagata, J. Gen. Appl. Microbiol., 46, 147 (2000); https://doi.org/10.2323/jgam.46.147
- D. Lin, P. Lopez-Sanchez, R. Li and Z. Li, Bioresour. Technol., 151, 113 (2014); https://doi.org/10.1016/j.biortech.2013.10.052
- Sarkono, S. Moeljopawiro, B. Setiaji and L. Sembiring, Biosci. Biotechnol. Res. Asia, 11, 1259 (2014); https://doi.org/10.13005/bbra/1514
- M. Ul-Islam, J.H. Ha, T. Khan and J.K. Park, Carbohydr. Polym., 92, 360 (2013); https://doi.org/10.1016/j.carbpol.2012.09.060
- M. Ul-Islam, W.A. Khattak, M. Kang, S.M. Kim, T. Khan and J.K. Park, Cellulose, 20, 253 (2013); https://doi.org/10.1007/s10570-012-9799-9
- M.W. Ullah, M. Ul-Islam, S. Khan, Y. Kim and J.K. Park, Carbohydr. Polym., 136, 908 (2016); https://doi.org/10.1016/j.carbpol.2015.10.010
- G. Gayathry and G. Gopalaswamy, Indian J. Fiber Text. Res., 39, 93 (2014).
- H.-I. Jung, O.-M. Lee, J.-H. Jeong, Y.-D. Jeon, K.-H. Park, H.-S. Kim, W.-G. An and H.-J. Son, J. Appl. Biochem. Biotechnol., 162, 486 (2010); https://doi.org/10.1007/s12010-009-8759-9
- J.K. Park, Y.H. Park and J.Y. Jung, Biotechnol. Bioprocess Eng., 8, 83 (2003); https://doi.org/10.1007/BF02940261
- S. Jia, H. Ou, G. Chen, D.B. Choi, K.A. Cho, M. Okabe and W.S. Cha, Biotechnol. Bioprocess Eng., 9, 166 (2004); https://doi.org/10.1007/BF02942287
- H. Kitagawa, M. Kanamori, S. Tatezaki, T. Itoh and H. Tsuji, Spine, 15, 1236 (1990); https://doi.org/10.1097/00007632-199011010-00028
- T. Mukai, T. Toba, T. Itoh and S. Adachi, Carbohydr. Res., 204, 227 (1990); https://doi.org/10.1016/0008-6215(90)84039-W
- M. Nomura, H. Harino and T. Itoh, Jpn. J. Appl. Phys., 29, 2456 (1990); https://doi.org/10.1143/JJAP.29.2456
- . A.G. Matthysse, S. White and R. Lightfoot, J. Bacteriol., 177, 1069 (1995); https://doi.org/10.1128/jb.177.4.1069-1075.1995
- Y. Hatta, M. Baba and S. Aizawa, Acta Haematol. Jap., 53, 923 (1990).
- B.S. Hungund and S.G. Gupta, World J. Microbiol. Biotechnol., 26, 1823 (2010).
- T.K. Ayaki, K. Fujikawa, H. Ryo, T. Itoh and S. Kondo, Genetics, 126, 157 (1990); https://doi.org/10.1093/genetics/126.1.157
- M. Schramm and S. Hestrin, J. Gen. Microbiol., 11, 123 (1954); https://doi.org/10.1099/00221287-11-1-123
References
P.R. Chawla, I.B. Bajaj and S.A. Survase, Food Technol. Biotechnol., 47, 107 (2009).
R.M. Brown Jr., J. Polym. Sci. A Polym. Chem., 42, 487 (2004); https://doi.org/10.1002/pola.10877
M. Shoda and Y. Sugano, Biotechnol. Bioprocess Eng., 10, 1 (2005); https://doi.org/10.1007/BF02931175
J.Y. Jung, J.K. Park and H.N. Chang, Enzyme Microb. Technol., 37, 347 (2005); https://doi.org/10.1016/j.enzmictec.2005.02.019
H. Toyosaki, T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida and F. Yoshinaga, Biosci. Biotechnol. Biochem., 59, 1498 (1995); https://doi.org/10.1271/bbb.59.1498
P. Lisdiyanti, H. Kawasaki, T. Seki, Y. Yamada, T. Uchimura and K. Komagata, J. Gen. Appl. Microbiol., 47, 119 (2001); https://doi.org/10.2323/jgam.47.119
F. Dellaglio, I. Cleenwerck, G.E. Felis, K. Engelbeen, D. Janssens and M. Marzotto, Int. J. Syst. Evol. Microbiol., 55, 2365 (2005); https://doi.org/10.1099/ijs.0.63301-0
P. Ross, R. Mayer and M. Benziman, Microbiol. Rev., 55, 35 (1991); https://doi.org/10.1128/mr.55.1.35 58.1991
B. McKenna, D. Mikkelsen, J. Wehr, M. Gidley and N. Menzies, Cellulose, 16, 1047 (2009); https://doi.org/10.1007/s10570-009-9340-y
D. Klemm, D. Schumann, U. Udhardt and S. Marsch, Prog. Polym. Sci., 26, 1561 (2001); https://doi.org/10.1016/S0079-6700(01)00021-1
W. Czaja, A. Krystynowicz, S. Bielecki and R. Brownjr, Biomaterials, 27, 145 (2006); https://doi.org/10.1016/j.biomaterials.2005.07.035
I.M. Ida, P. Norhayati and Z. Khairul, Eds.: M.W. Wasim and K. Prasad, Bacterial Cellulose as Secondary Metabolite: Production, Processing and Applications. In: Plant Secondary Metabolites: Biological and Therapeutic Significance, Apple Academic Press, CRC: USA, vol. 1, pp 169-200 (2016).
R. Jonas and L.F. Farah, Polym. Degrad. Stab., 59, 101 (1998); https://doi.org/10.1016/S0141 3910(97)00197-3
S. Hestrin and M. Schramm, Biochem. J., 58, 345 (1954); https://doi.org/10.1042/bj0580345
R.M.A. Gallardo De Jesus and T.M. Elvira, Philipp. J. Sci., 100, 41 (1971).
J.G. Holt, N.R. Krieg, P.H. Sneath, J.T. Staley and S.T. Williams, Bergey’s Manual of Determinative Bacteriology, Ed.: 9 (2004).
P. Loganathan, R. Sunita, A.K. Parida and S. Nair, J. Appl. Microbiol., 87, 167 (1999); https://doi.org/10.1046/j.1365-2672.1999.00804.x
J. Trèek, K. Jernejc and K. Matsushita, Extremophiles, 11, 627 (2007); https://doi.org/10.1007/s00792 007-0077-y
P. Yukphan, T. Malimas, M. Takahashi, W. Potacharoen, T. Busabun, S. Tanasupawat, Y. Nakagawa, M. Tanticharoen and Y. Yamada, J. Gen. Appl. Microbiol., 50, 189 (2004); https://doi.org/10.2323/jgam.50.189
D.L. Jozef, G. Monique and S. Jeans, Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins Publishing: USA, pp. 267-274 (1986).
F. Jahan, V. Kumar, G. Rawat and R.K. Saxena, Appl. Biochem. Biotechnol., 167, 1157 (2012); https://doi.org/10.1007/s12010-012-9595-x
P. Lisdiyanti, H. Kawasaki, T. Seki, Y. Yamada, T. Uchimura and K. Komagata, J. Gen. Appl. Microbiol., 46, 147 (2000); https://doi.org/10.2323/jgam.46.147
D. Lin, P. Lopez-Sanchez, R. Li and Z. Li, Bioresour. Technol., 151, 113 (2014); https://doi.org/10.1016/j.biortech.2013.10.052
Sarkono, S. Moeljopawiro, B. Setiaji and L. Sembiring, Biosci. Biotechnol. Res. Asia, 11, 1259 (2014); https://doi.org/10.13005/bbra/1514
M. Ul-Islam, J.H. Ha, T. Khan and J.K. Park, Carbohydr. Polym., 92, 360 (2013); https://doi.org/10.1016/j.carbpol.2012.09.060
M. Ul-Islam, W.A. Khattak, M. Kang, S.M. Kim, T. Khan and J.K. Park, Cellulose, 20, 253 (2013); https://doi.org/10.1007/s10570-012-9799-9
M.W. Ullah, M. Ul-Islam, S. Khan, Y. Kim and J.K. Park, Carbohydr. Polym., 136, 908 (2016); https://doi.org/10.1016/j.carbpol.2015.10.010
G. Gayathry and G. Gopalaswamy, Indian J. Fiber Text. Res., 39, 93 (2014).
H.-I. Jung, O.-M. Lee, J.-H. Jeong, Y.-D. Jeon, K.-H. Park, H.-S. Kim, W.-G. An and H.-J. Son, J. Appl. Biochem. Biotechnol., 162, 486 (2010); https://doi.org/10.1007/s12010-009-8759-9
J.K. Park, Y.H. Park and J.Y. Jung, Biotechnol. Bioprocess Eng., 8, 83 (2003); https://doi.org/10.1007/BF02940261
S. Jia, H. Ou, G. Chen, D.B. Choi, K.A. Cho, M. Okabe and W.S. Cha, Biotechnol. Bioprocess Eng., 9, 166 (2004); https://doi.org/10.1007/BF02942287
H. Kitagawa, M. Kanamori, S. Tatezaki, T. Itoh and H. Tsuji, Spine, 15, 1236 (1990); https://doi.org/10.1097/00007632-199011010-00028
T. Mukai, T. Toba, T. Itoh and S. Adachi, Carbohydr. Res., 204, 227 (1990); https://doi.org/10.1016/0008-6215(90)84039-W
M. Nomura, H. Harino and T. Itoh, Jpn. J. Appl. Phys., 29, 2456 (1990); https://doi.org/10.1143/JJAP.29.2456
. A.G. Matthysse, S. White and R. Lightfoot, J. Bacteriol., 177, 1069 (1995); https://doi.org/10.1128/jb.177.4.1069-1075.1995
Y. Hatta, M. Baba and S. Aizawa, Acta Haematol. Jap., 53, 923 (1990).
B.S. Hungund and S.G. Gupta, World J. Microbiol. Biotechnol., 26, 1823 (2010).
T.K. Ayaki, K. Fujikawa, H. Ryo, T. Itoh and S. Kondo, Genetics, 126, 157 (1990); https://doi.org/10.1093/genetics/126.1.157
M. Schramm and S. Hestrin, J. Gen. Microbiol., 11, 123 (1954); https://doi.org/10.1099/00221287-11-1-123