Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Antimicrobial Activity of Synthesized Multi-Metallic Nanoparticles using Traditional Indian Siddha Method
Corresponding Author(s) : Kaviarasu Balakrishnan
Asian Journal of Chemistry,
Vol. 34 No. 2 (2022): Vol 34 Issue 2
Abstract
In present work, multi-metallic nanoparticles were synthesized by chemical method in a controlled environment by using silver, lead, mercury, egg shell powder (contains 1% calcium phosphate, 1% magnesium carbonate, 94% calcium carbonate and 4% organic matter), potassium nitrate, potassium alum and extracts of citrus lemon by following the process defined in Traditional Indian Medicine, Siddha System of Medicine. The morphology, compositions and structure of the product were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM) techniques. Highly uniform spherical multi-metallic nanoparticle was subjected for the antibacterial activities. The particles were agglomerated as observed by SEM micrographs. The particles were homogeneous, spherical in shape and loosely agglomerated as seen by TEM pictures. The antibacterial activity of the synthesized multi-metallic nanoparticles against B. cereus, S. aureus, E. coli and P. aeuroginosa was demonstrated using the zone of inhibition technique. The synthesized multi-metallic nanoparticle can find plausible biological applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Ju-Nam and J.R. Lead, Sci. Total Environ., 6, 143 (2008); https://doi.org/10.1016/j.scitotenv.2008.06.042
- G.R. Chaudhuri and S. Paria, Chem. Rev., 112, 2373 (2012); https://doi.org/10.1021/cr100449n
- C. Morasso, D. Mehn, R. Vanna, M. Bedoni, E. Forvi, M. Colombo, D. Prosperi and F. Gramatica, Mater. Chem. Phys., 143, 1215 (2014); https://doi.org/10.1016/j.matchemphys.2013.11.024
- N.A. Luechinger, R.N. Grass, E.K. Athanassiou and W.J. Stark, Chem. Mater., 22, 155 (2010); https://doi.org/10.1021/cm902527n
- J. Liu, S.Z. Qiao, Q.H. Hu and G.Q. Max Lu, Small, 7, 425 (2011); https://doi.org/10.1002/smll.201001402
- M. Popescu, A. Velea and A. Lorinczi, Dig. J. Nanomater. Biostruct., 5, 1035 (2010).
- V. Dushenkov, P.B.A.N. Kumar, H. Motto and I. Raskin, Environ. Sci. Technol., 29, 1239 (1995); https://doi.org/10.1021/es00005a015
- Y.V. Anisimova, S.I. Gelperina, C.A. Peloquin and L.B. Heifets, J. Nanopart. Res., 2, 165 (2000); https://doi.org/10.1023/A:1010061013365
- S. Suri, H. Fenniri and B. Singh, J. Occup. Med. Toxicol., 2, 16 (2007); https://doi.org/10.1186/1745-6673-2-16
- A. Ram, D. Arul Joseph, S. Balachandar and V. Pal Singh, Int. J. Pharm. Anal., 1, 975 (2009).
- V.V. Mody, R. Siwale, A. Singh and H.R. Mody, J. Pharm. Bioallied Sci., 2, 282 (2010); https://doi.org/10.4103/0975-7406.72127
- W.H. De Jong, W.I. Hagens, P. Krystek, M.C. Burger, A.J.A.M. Sips, and R.E. Geertsma, Biomaterials, 29, 1912 (2008); https://doi.org/10.1016/j.biomaterials.2007.12.037
- D. Chenthamara, S. Subramaniam, S.G. Ramakrishnan, S. Krishnaswamy, M.M. Essa, F.H. Lin and M.W. Qoronfleh, Biomater. Res., 23, 20 (2019); https://doi.org/10.1186/s40824-019-0166-x
- N. Zahin, R. Anwar, D. Tewari, M.T. Kabir, A. Sajid, B. Mathew, M.S. Uddin, L. Aleya and M.M. Abdel Daim 6, Environ. Sci. Pollut. Res. Int., 27, 19151 (2019); https://doi.org/10.1007/s11356-019-05211-0
- T. Satyanarayana and S.S. Reddy, Int. J. Res. Appl. Sci. Eng. Technol., 6, 2885 (2018); https://doi.org/10.22214/ijraset.2018.1396
- S.H. Khan, Eds.: M. Naushad and E. Lichtfouse, Green Nanotechnology for the Environment and Sustainable Development, In: Green Materials for Wastewater Treatment, Environmental Chemistry for a Sustainable World, Springer, Cham, vol. 38, pp. 13-46 (2020).
- I. Wiegand, K. Hilpert and R.E. Hancock, Nat. Protoc., 3, 163 (2008); https://doi.org/10.1038/nprot.2007.521
- S.C. Londono, H.E. Hartnett and L.B. Williams, Environ. Sci. Technol., 51, 2401 (2017); https://doi.org/10.1021/acs.est.6b04670
- S. Stankic, S. Suman, F. Haque and J. Vidic, J. Nanobiotechnol., 14, 73 (2016); https://doi.org/10.1186/s12951-016-0225-6
- Y.N. Slavin, J. Asnis, U.O. Häfeli and H. Bach, J. Nanobiotechnol., 15, 65 (2017); https://doi.org/10.1186/s12951-017-0308-z
References
Y. Ju-Nam and J.R. Lead, Sci. Total Environ., 6, 143 (2008); https://doi.org/10.1016/j.scitotenv.2008.06.042
G.R. Chaudhuri and S. Paria, Chem. Rev., 112, 2373 (2012); https://doi.org/10.1021/cr100449n
C. Morasso, D. Mehn, R. Vanna, M. Bedoni, E. Forvi, M. Colombo, D. Prosperi and F. Gramatica, Mater. Chem. Phys., 143, 1215 (2014); https://doi.org/10.1016/j.matchemphys.2013.11.024
N.A. Luechinger, R.N. Grass, E.K. Athanassiou and W.J. Stark, Chem. Mater., 22, 155 (2010); https://doi.org/10.1021/cm902527n
J. Liu, S.Z. Qiao, Q.H. Hu and G.Q. Max Lu, Small, 7, 425 (2011); https://doi.org/10.1002/smll.201001402
M. Popescu, A. Velea and A. Lorinczi, Dig. J. Nanomater. Biostruct., 5, 1035 (2010).
V. Dushenkov, P.B.A.N. Kumar, H. Motto and I. Raskin, Environ. Sci. Technol., 29, 1239 (1995); https://doi.org/10.1021/es00005a015
Y.V. Anisimova, S.I. Gelperina, C.A. Peloquin and L.B. Heifets, J. Nanopart. Res., 2, 165 (2000); https://doi.org/10.1023/A:1010061013365
S. Suri, H. Fenniri and B. Singh, J. Occup. Med. Toxicol., 2, 16 (2007); https://doi.org/10.1186/1745-6673-2-16
A. Ram, D. Arul Joseph, S. Balachandar and V. Pal Singh, Int. J. Pharm. Anal., 1, 975 (2009).
V.V. Mody, R. Siwale, A. Singh and H.R. Mody, J. Pharm. Bioallied Sci., 2, 282 (2010); https://doi.org/10.4103/0975-7406.72127
W.H. De Jong, W.I. Hagens, P. Krystek, M.C. Burger, A.J.A.M. Sips, and R.E. Geertsma, Biomaterials, 29, 1912 (2008); https://doi.org/10.1016/j.biomaterials.2007.12.037
D. Chenthamara, S. Subramaniam, S.G. Ramakrishnan, S. Krishnaswamy, M.M. Essa, F.H. Lin and M.W. Qoronfleh, Biomater. Res., 23, 20 (2019); https://doi.org/10.1186/s40824-019-0166-x
N. Zahin, R. Anwar, D. Tewari, M.T. Kabir, A. Sajid, B. Mathew, M.S. Uddin, L. Aleya and M.M. Abdel Daim 6, Environ. Sci. Pollut. Res. Int., 27, 19151 (2019); https://doi.org/10.1007/s11356-019-05211-0
T. Satyanarayana and S.S. Reddy, Int. J. Res. Appl. Sci. Eng. Technol., 6, 2885 (2018); https://doi.org/10.22214/ijraset.2018.1396
S.H. Khan, Eds.: M. Naushad and E. Lichtfouse, Green Nanotechnology for the Environment and Sustainable Development, In: Green Materials for Wastewater Treatment, Environmental Chemistry for a Sustainable World, Springer, Cham, vol. 38, pp. 13-46 (2020).
I. Wiegand, K. Hilpert and R.E. Hancock, Nat. Protoc., 3, 163 (2008); https://doi.org/10.1038/nprot.2007.521
S.C. Londono, H.E. Hartnett and L.B. Williams, Environ. Sci. Technol., 51, 2401 (2017); https://doi.org/10.1021/acs.est.6b04670
S. Stankic, S. Suman, F. Haque and J. Vidic, J. Nanobiotechnol., 14, 73 (2016); https://doi.org/10.1186/s12951-016-0225-6
Y.N. Slavin, J. Asnis, U.O. Häfeli and H. Bach, J. Nanobiotechnol., 15, 65 (2017); https://doi.org/10.1186/s12951-017-0308-z