Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Efficiency of Hybrid Titanium Dioxide Nanowires/Reduced Graphene Oxide (TiO2NWs/RGO) for Degradation of Methyl Orange Dye
Corresponding Author(s) : M.H. Razali
Asian Journal of Chemistry,
Vol. 34 No. 2 (2022): Vol 34 Issue 2
Abstract
The aim of this research is to improve the photocatalytic efficiency by implementation of titanium dioxide nanowires/reduced graphene oxide (TiO2NWs/RGO) hybrid photocatalyst for dye degradation. The hybrid photocatalyst TiO2NWs/RGO was prepared using fabrication method. The physico-chemical properties of the photocatalyst was investigated by FTIR, XRD, SEM TGA, BET and their photocatalytic efficiency was evaluated for methyl orange degradation. Almost 100% of methyl orange was degraded by TiO2NWs/RGO hybrid photocatalyst under UV light within 210 min using 1.0 g at initial concentration of methyl orange were 10 and 20 ppm. This is due to the 1D/2D heterostructures of TiO2NWs/RGO hybrid photocatalyst that leads to the larger surface area, unique morphological and crystallinity properties, as well as excellent mobility of charge carriers and thermally stable structure
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.B.R. Kamalam, S. Inbanathan, K. Sethuraman, Appl. Surf. Sci., 449, 685 (2018); https://doi.org/10.1016/j.apsusc.2017.12.099
- W. Zhao, Z. Bai, A. Ren, B. Guo and C. Wu, Appl. Surf. Sci., 256, 3493 (2010); https://doi.org/10.1016/j.apsusc.2009.12.062
- K. Santhi, M. Navaneethan, S. Harish, S. Ponnusamy and C. Muthamizhchelvan, Appl. Surf. Sci., 500, 144058 (2019); https://doi.org/10.1016/j.apsusc.2019.144058
- M. Asiah, M. Mamat, Z. Khusaimi, M. Achoi, S. Abdullah and M. Rusop, Micro Eng., 108, 134 (2013); https://doi.org/10.1016/j.mee.2013.02.010
- X. Chen and S.S. Mao, Chem. Rev., 107, 2891 (2007); https://doi.org/10.1021/cr0500535
- S.G. Kumar and L.G. Devi, J. Phys. Chem., 115, 13211 (2011); https://doi.org/10.1021/jp204364a
- J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D.W. Bahnemann, Chem. Rev., 114, 9919 (2014); https://doi.org/10.1021/cr5001892
- M. Ni, M.K.H. Leung, D.Y.C. Leung and K. Sumathy, Renew. Sustain. Energy Rev., 11, 401 (2007); https://doi.org/10.1016/j.rser.2005.01.009
- M. Najafi, A. Kermanpur, M.R. Rahimipour and A. Najafizadeh, J. Alloys Compd., 722, 272 (2017); https://doi.org/10.1016/j.jallcom.2017.06.001
- M.F. Abdel-Messih, M.A. Ahmed and A.S. El-Sayed, J. Photochem. Photobiol. Chem., 260, 1 (2013); https://doi.org/10.1016/j.jphotochem.2013.03.011
- P. Makal and D. Das, J. Environ. Chem. Eng., 7, 103358 (2019); https://doi.org/10.1016/j.jece.2019.103358
- B. Gao, C. Peng, G. Chen and G. Lipuma, Appl. Catal. B, 85, 17 (2008); https://doi.org/10.1016/j.apcatb.2008.06.027
- B. Liu and H.C. Zeng, Chem. Mater., 20, 2711 (2008); https://doi.org/10.1021/cm800040k
- X. Yu, W. Zhang, P. Zhang and Z. Su, Biosens. Bioelectron., 89, 72 (2017); https://doi.org/10.1016/j.bios.2016.01.081
- X. Zhao, Y. Li, J. Wang, Z. Ouyang, J. Li, G. Wei and Z. Su, ACS Appl. Mater. Interfaces, 6, 4254 (2014); https://doi.org/10.1021/am405983a
- Z. Gao, N. Liu, D. Wu, W. Tao, F. Xu and K. Jiang, Appl. Surf. Sci., 258, 2473 (2012); https://doi.org/10.1016/j.apsusc.2011.10.075
- X. Li, R. Shen, S. Ma, X. Chen and J. Xie, Appl. Surf. Sci., 430, 53 (2018); https://doi.org/10.1016/j.apsusc.2017.08.194
- H. Xie, X. Ye, K. Duan, M. Xue, Y. Du, W. Ye and C. Wang, J. Alloys Compd., 636, 40 (2015); https://doi.org/10.1016/j.jallcom.2015.02.159
- X. Wei, C. Ou, X. Guan, Z. Peng and X. Zheng, Appl. Surf. Sci., 469, 666 (2019); https://doi.org/10.1016/j.apsusc.2018.11.102
- D. Akyuz, B. Keskin, U. Sahinturk and A. Koca, Appl. Catal. B, 188, 217 (2016); https://doi.org/10.1016/j.apcatb.2016.02.003
- B.S. Gonçalves, H.G. Palhares, T.C.D. Souza, V.G. de Castro, G.G. Silva, B.C. Silva, K. Krambrock, R.B. Soares, V.F.C. Lins, M. Houmard and E.H.M. Nunes, J. Mater. Res. Technol., 8, 6262 (2019); https://doi.org/10.1016/j.jmrt.2019.10.020
- P. Singh , P. Shandilya, P. Raizada, A. Sudhaik, A. Rahmani-Sani and A. Hosseini-Bandegharaei, Arab. J. Chem., 13, 3498 (2020); https://doi.org/10.1016/j.arabjc.2018.12.001
- L.K. Putri, W.J. Ong, W.S. Chang and S.P. Chai, Appl. Mater. Today, 4, 9 (2016); https://doi.org/10.1016/j.apmt.2016.04.001
- H. Fan, G. Yi, Z. Zhang, X. Zhang, P. Li, C. Zhang, L. Chen, Y. Zhang and Q. Sun, Opt. Mater., 120, 111482 (2021); https://doi.org/10.1016/j.optmat.2021.111482
- H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); https://doi.org/10.1021/nn901221k
- S. Wang, Y. Zhang, N. Abidi and L. Cabrales, Langmuir, 25, 11078 (2009); https://doi.org/10.1021/la901402f
- F. Bashiri, S.M. Khezri, R.R. Kalantary and B. Kakavandi, J. Mol. Liq., 314, 113 (2020); https://doi.org/10.1016/j.molliq.2020.113608
- T. Nguyen-Phan, V.H. Pham, E.W. Shin, H.-D. Pham, S. Kim, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 170, 226 (2011); https://doi.org/10.1016/j.cej.2011.03.060
- X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang and Z. Fan, J. Appl. Mater. Inter., 4, 3944 (2012); https://doi.org/10.1021/am300772t
- A.S. Alshammari, M.M. Halim, F.K. Yam and N.H.M. Kaus, Mater. Sci. Semi. Proc., 116, 105140 (2020); https://doi.org/10.1016/j.mssp.2020.105140
- H. Guo, N. Jiang, H. Wang, K. Shang, N. Lu, J. Li and Y. Wu, Appl. Catal. B, 248, 552 (2019); https://doi.org/10.1016/j.apcatb.2019.01.052
- W. Sang, C. Zhan, S. Hao, L. Mei, J. Cui, Q. Zhang, X. Jin and C. Li, J. Water Process Eng., 41, 101997 (2021); https://doi.org/10.1016/j.jwpe.2021.101997
- M.H.H. Ali, A.D. Al-Afify and M.E. Goher, Egypt. J. Aquat. Res., 44, 263 (2018); https://doi.org/10.1016/j.ejar.2018.11.009
- C.B.D. Marien, T. Cottineau, D. Robert and P. Drogui, Appl. Catal. B, 194, 1 (2016); https://doi.org/10.1016/j.apcatb.2016.04.040
- G. Cheng, F. Xu, J. Xiong, F. Tian, J. Ding, F.J. Stadler and R. Chen, Adv. Powder Technol., 27, 1949 (2016); https://doi.org/10.1016/j.apt.2016.06.026
- G. Nagaraju, G. Ebeling, R.V. Gonçalves, S.R. Teixeira, D.E. Weibel and J. Dupont, J. Mol. Catal. Chem., 378, 213 (2013); https://doi.org/10.1016/j.molcata.2013.06.010
- E. Kusiak-Nejman, A. Wanag, J. Kapica-Kozar, L. Kowalczyk, M. Zgrzebnicki, B. Tryba, J. Przepiórski and A.W. Morawski, Catal. Today, 357, 630 (2020); https://doi.org/10.1016/j.cattod.2019.04.078
- N. Cao, and Y. Zhang, J. Nanomater., 2015, 168125 (2015); https://doi.org/10.1155/2015/168125
- J. Corredor, M.J. Rivero and I. Ortiz, Int. J. Hydrogen Energy, 46, 17500 (2021); https://doi.org/10.1016/j.ijhydene.2020.01.181
- W. Zhang, Y. Tian, H. He, L. Xu, W. Li and D. Zhao, Natl. Sci. Rev., 7, 1702 (2020); https://doi.org/10.1093/nsr/nwaa021
- W.R.K. Thalgaspitiya, T. Kankanam Kapuge, J. He, B. Deljoo, A.G. Meguerdichian, M. Aindow and S.L. Suib, Micropor. Mesopor. Mater., 301, 110521 (2020); https://doi.org/10.1016/j.micromeso.2020.110521
- H.A. Hamad, W.A. Sadik, M.M. Abd El-latif, A.B. Kashyout and M.Y. Feteha, J. Environ. Sci., 43, 26 (2016); https://doi.org/10.1016/j.jes.2015.05.033
- A. Mezni, J. Mater. Res. Technol., 9, 15263 (2020); https://doi.org/10.1016/j.jmrt.2020.10.104
- J.W. Shi, J.T. Zheng and P. Wu, J. Hazard. Mater., 161, 416 (2009); https://doi.org/10.1016/j.jhazmat.2008.03.114
- D. Bamba, M. Coulibaly, C.I. Fort, C.L. Cotet, Z. Pap, K. Vajda, E.G. Zoro, N.A. Yao, V. Danciu and D. Robert, Phys. Status. Sol. B., 252, 2503 (2015); https://doi.org/10.1002/pssb.201552219
- Y. Chen and D.D. Dionysiou, J. Mol. Catal. Chem., 244, 73 (2006); https://doi.org/10.1016/j.molcata.2005.08.056
- M.M. Ba-Abbad, A.A.H. Kadhum, A.B.R. Mohamad, M.S. Takriff and K. Sopian, Int. J. Electrochem. Sci., 7, 4871 (2012).
- S.P. Deshmukh, D.P. Kale, S. Kar, S.R. Shirsath, B.A. Bhanvase, V.K. Saharan and S.H. Sonawane, Nano-Structures Nano-Objects., 21, 100407 (2020); https://doi.org/10.1016/j.nanoso.2019.100407
- J.M. Monteagudo, A. Durán, M.R. Martínez and M.I. San, Chem. Eng. J., 380, 122410 (2019); https://doi.org/10.1016/j.cej.2019.122410
- N.T. Padmanabhan, M.K. Jayaraj and H. John, Catal. Today, 348, 63 (2019); https://doi.org/10.1016/j.cattod.2019.09.029
- X. Yan, L. Huo, C. Ma and J. Lu, Process Saf. Environ. Prot., 130, 257 (2019); https://doi.org/10.1016/j.psep.2019.08.021
- F. Sun, J. He, P. Wu, Q. Zeng, C. Liu and W. Jiang, Chem. Eng. J., 397, 125397 (2020); https://doi.org/10.1016/j.cej.2020.125397
- M. Fu, Y. Li, S. Wu, P. Lu, J. Liu and F. Dong, Appl. Surf. Sci., 258, 1587 (2011); https://doi.org/10.1016/j.apsusc.2011.10.003
- C.H. Nguyen, M.L. Tran, T.T.V. Tran and R.-S. Juang, Sep. Purif. Technol., 115962 (2019); https://doi.org/10.1016/j.seppur.2019.115962
- X. Yao, B. Zhang, S. Cui, S. Yang and X. Tang, Appl. Surf. Sci., 551, 149419 (2021); https://doi.org/10.1016/j.apsusc.2021.149419
- X. Zheng, D. Zhang, Y. Gao, Y. Wu, Q. Liu and X. Zhu, Inorg. Chem. Commun., 110, 107589 (2019); https://doi.org/10.1016/j.inoche.2019.107589
- G. Chen, S. Ouyang, Y. Deng, M. Chen, Y. Zhao, W. Zou and Q. Zhao, RSC Adv., 9, 18652 (2019); https://doi.org/10.1039/C9RA03250A
- J. Huo, C. Yuan and Y. Wang, ACS Appl. Nano Mater., 2, 2713 (2019); https://doi.org/10.1021/acsanm.9b00215
- Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao and J. Ma, Carbon, 50, 4093 (2012); https://doi.org/10.1016/j.carbon.2012.04.057
- V.Q. Hieu, T.K. Phung, T.-Q. Nguyen, A. Khan, V.D. Doan, V.A. Tran and V.T. Le, Chemosphere, 276, 130154 (2021); https://doi.org/10.1016/j.chemosphere.2021.130154
- C. Guo, J. Xu, Y. He, Y. Zhang and Y. Wang, Appl. Surf. Sci., 257, 3798 (2011); https://doi.org/10.1016/j.apsusc.2010.11.152
References
M.B.R. Kamalam, S. Inbanathan, K. Sethuraman, Appl. Surf. Sci., 449, 685 (2018); https://doi.org/10.1016/j.apsusc.2017.12.099
W. Zhao, Z. Bai, A. Ren, B. Guo and C. Wu, Appl. Surf. Sci., 256, 3493 (2010); https://doi.org/10.1016/j.apsusc.2009.12.062
K. Santhi, M. Navaneethan, S. Harish, S. Ponnusamy and C. Muthamizhchelvan, Appl. Surf. Sci., 500, 144058 (2019); https://doi.org/10.1016/j.apsusc.2019.144058
M. Asiah, M. Mamat, Z. Khusaimi, M. Achoi, S. Abdullah and M. Rusop, Micro Eng., 108, 134 (2013); https://doi.org/10.1016/j.mee.2013.02.010
X. Chen and S.S. Mao, Chem. Rev., 107, 2891 (2007); https://doi.org/10.1021/cr0500535
S.G. Kumar and L.G. Devi, J. Phys. Chem., 115, 13211 (2011); https://doi.org/10.1021/jp204364a
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D.W. Bahnemann, Chem. Rev., 114, 9919 (2014); https://doi.org/10.1021/cr5001892
M. Ni, M.K.H. Leung, D.Y.C. Leung and K. Sumathy, Renew. Sustain. Energy Rev., 11, 401 (2007); https://doi.org/10.1016/j.rser.2005.01.009
M. Najafi, A. Kermanpur, M.R. Rahimipour and A. Najafizadeh, J. Alloys Compd., 722, 272 (2017); https://doi.org/10.1016/j.jallcom.2017.06.001
M.F. Abdel-Messih, M.A. Ahmed and A.S. El-Sayed, J. Photochem. Photobiol. Chem., 260, 1 (2013); https://doi.org/10.1016/j.jphotochem.2013.03.011
P. Makal and D. Das, J. Environ. Chem. Eng., 7, 103358 (2019); https://doi.org/10.1016/j.jece.2019.103358
B. Gao, C. Peng, G. Chen and G. Lipuma, Appl. Catal. B, 85, 17 (2008); https://doi.org/10.1016/j.apcatb.2008.06.027
B. Liu and H.C. Zeng, Chem. Mater., 20, 2711 (2008); https://doi.org/10.1021/cm800040k
X. Yu, W. Zhang, P. Zhang and Z. Su, Biosens. Bioelectron., 89, 72 (2017); https://doi.org/10.1016/j.bios.2016.01.081
X. Zhao, Y. Li, J. Wang, Z. Ouyang, J. Li, G. Wei and Z. Su, ACS Appl. Mater. Interfaces, 6, 4254 (2014); https://doi.org/10.1021/am405983a
Z. Gao, N. Liu, D. Wu, W. Tao, F. Xu and K. Jiang, Appl. Surf. Sci., 258, 2473 (2012); https://doi.org/10.1016/j.apsusc.2011.10.075
X. Li, R. Shen, S. Ma, X. Chen and J. Xie, Appl. Surf. Sci., 430, 53 (2018); https://doi.org/10.1016/j.apsusc.2017.08.194
H. Xie, X. Ye, K. Duan, M. Xue, Y. Du, W. Ye and C. Wang, J. Alloys Compd., 636, 40 (2015); https://doi.org/10.1016/j.jallcom.2015.02.159
X. Wei, C. Ou, X. Guan, Z. Peng and X. Zheng, Appl. Surf. Sci., 469, 666 (2019); https://doi.org/10.1016/j.apsusc.2018.11.102
D. Akyuz, B. Keskin, U. Sahinturk and A. Koca, Appl. Catal. B, 188, 217 (2016); https://doi.org/10.1016/j.apcatb.2016.02.003
B.S. Gonçalves, H.G. Palhares, T.C.D. Souza, V.G. de Castro, G.G. Silva, B.C. Silva, K. Krambrock, R.B. Soares, V.F.C. Lins, M. Houmard and E.H.M. Nunes, J. Mater. Res. Technol., 8, 6262 (2019); https://doi.org/10.1016/j.jmrt.2019.10.020
P. Singh , P. Shandilya, P. Raizada, A. Sudhaik, A. Rahmani-Sani and A. Hosseini-Bandegharaei, Arab. J. Chem., 13, 3498 (2020); https://doi.org/10.1016/j.arabjc.2018.12.001
L.K. Putri, W.J. Ong, W.S. Chang and S.P. Chai, Appl. Mater. Today, 4, 9 (2016); https://doi.org/10.1016/j.apmt.2016.04.001
H. Fan, G. Yi, Z. Zhang, X. Zhang, P. Li, C. Zhang, L. Chen, Y. Zhang and Q. Sun, Opt. Mater., 120, 111482 (2021); https://doi.org/10.1016/j.optmat.2021.111482
H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); https://doi.org/10.1021/nn901221k
S. Wang, Y. Zhang, N. Abidi and L. Cabrales, Langmuir, 25, 11078 (2009); https://doi.org/10.1021/la901402f
F. Bashiri, S.M. Khezri, R.R. Kalantary and B. Kakavandi, J. Mol. Liq., 314, 113 (2020); https://doi.org/10.1016/j.molliq.2020.113608
T. Nguyen-Phan, V.H. Pham, E.W. Shin, H.-D. Pham, S. Kim, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 170, 226 (2011); https://doi.org/10.1016/j.cej.2011.03.060
X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang and Z. Fan, J. Appl. Mater. Inter., 4, 3944 (2012); https://doi.org/10.1021/am300772t
A.S. Alshammari, M.M. Halim, F.K. Yam and N.H.M. Kaus, Mater. Sci. Semi. Proc., 116, 105140 (2020); https://doi.org/10.1016/j.mssp.2020.105140
H. Guo, N. Jiang, H. Wang, K. Shang, N. Lu, J. Li and Y. Wu, Appl. Catal. B, 248, 552 (2019); https://doi.org/10.1016/j.apcatb.2019.01.052
W. Sang, C. Zhan, S. Hao, L. Mei, J. Cui, Q. Zhang, X. Jin and C. Li, J. Water Process Eng., 41, 101997 (2021); https://doi.org/10.1016/j.jwpe.2021.101997
M.H.H. Ali, A.D. Al-Afify and M.E. Goher, Egypt. J. Aquat. Res., 44, 263 (2018); https://doi.org/10.1016/j.ejar.2018.11.009
C.B.D. Marien, T. Cottineau, D. Robert and P. Drogui, Appl. Catal. B, 194, 1 (2016); https://doi.org/10.1016/j.apcatb.2016.04.040
G. Cheng, F. Xu, J. Xiong, F. Tian, J. Ding, F.J. Stadler and R. Chen, Adv. Powder Technol., 27, 1949 (2016); https://doi.org/10.1016/j.apt.2016.06.026
G. Nagaraju, G. Ebeling, R.V. Gonçalves, S.R. Teixeira, D.E. Weibel and J. Dupont, J. Mol. Catal. Chem., 378, 213 (2013); https://doi.org/10.1016/j.molcata.2013.06.010
E. Kusiak-Nejman, A. Wanag, J. Kapica-Kozar, L. Kowalczyk, M. Zgrzebnicki, B. Tryba, J. Przepiórski and A.W. Morawski, Catal. Today, 357, 630 (2020); https://doi.org/10.1016/j.cattod.2019.04.078
N. Cao, and Y. Zhang, J. Nanomater., 2015, 168125 (2015); https://doi.org/10.1155/2015/168125
J. Corredor, M.J. Rivero and I. Ortiz, Int. J. Hydrogen Energy, 46, 17500 (2021); https://doi.org/10.1016/j.ijhydene.2020.01.181
W. Zhang, Y. Tian, H. He, L. Xu, W. Li and D. Zhao, Natl. Sci. Rev., 7, 1702 (2020); https://doi.org/10.1093/nsr/nwaa021
W.R.K. Thalgaspitiya, T. Kankanam Kapuge, J. He, B. Deljoo, A.G. Meguerdichian, M. Aindow and S.L. Suib, Micropor. Mesopor. Mater., 301, 110521 (2020); https://doi.org/10.1016/j.micromeso.2020.110521
H.A. Hamad, W.A. Sadik, M.M. Abd El-latif, A.B. Kashyout and M.Y. Feteha, J. Environ. Sci., 43, 26 (2016); https://doi.org/10.1016/j.jes.2015.05.033
A. Mezni, J. Mater. Res. Technol., 9, 15263 (2020); https://doi.org/10.1016/j.jmrt.2020.10.104
J.W. Shi, J.T. Zheng and P. Wu, J. Hazard. Mater., 161, 416 (2009); https://doi.org/10.1016/j.jhazmat.2008.03.114
D. Bamba, M. Coulibaly, C.I. Fort, C.L. Cotet, Z. Pap, K. Vajda, E.G. Zoro, N.A. Yao, V. Danciu and D. Robert, Phys. Status. Sol. B., 252, 2503 (2015); https://doi.org/10.1002/pssb.201552219
Y. Chen and D.D. Dionysiou, J. Mol. Catal. Chem., 244, 73 (2006); https://doi.org/10.1016/j.molcata.2005.08.056
M.M. Ba-Abbad, A.A.H. Kadhum, A.B.R. Mohamad, M.S. Takriff and K. Sopian, Int. J. Electrochem. Sci., 7, 4871 (2012).
S.P. Deshmukh, D.P. Kale, S. Kar, S.R. Shirsath, B.A. Bhanvase, V.K. Saharan and S.H. Sonawane, Nano-Structures Nano-Objects., 21, 100407 (2020); https://doi.org/10.1016/j.nanoso.2019.100407
J.M. Monteagudo, A. Durán, M.R. Martínez and M.I. San, Chem. Eng. J., 380, 122410 (2019); https://doi.org/10.1016/j.cej.2019.122410
N.T. Padmanabhan, M.K. Jayaraj and H. John, Catal. Today, 348, 63 (2019); https://doi.org/10.1016/j.cattod.2019.09.029
X. Yan, L. Huo, C. Ma and J. Lu, Process Saf. Environ. Prot., 130, 257 (2019); https://doi.org/10.1016/j.psep.2019.08.021
F. Sun, J. He, P. Wu, Q. Zeng, C. Liu and W. Jiang, Chem. Eng. J., 397, 125397 (2020); https://doi.org/10.1016/j.cej.2020.125397
M. Fu, Y. Li, S. Wu, P. Lu, J. Liu and F. Dong, Appl. Surf. Sci., 258, 1587 (2011); https://doi.org/10.1016/j.apsusc.2011.10.003
C.H. Nguyen, M.L. Tran, T.T.V. Tran and R.-S. Juang, Sep. Purif. Technol., 115962 (2019); https://doi.org/10.1016/j.seppur.2019.115962
X. Yao, B. Zhang, S. Cui, S. Yang and X. Tang, Appl. Surf. Sci., 551, 149419 (2021); https://doi.org/10.1016/j.apsusc.2021.149419
X. Zheng, D. Zhang, Y. Gao, Y. Wu, Q. Liu and X. Zhu, Inorg. Chem. Commun., 110, 107589 (2019); https://doi.org/10.1016/j.inoche.2019.107589
G. Chen, S. Ouyang, Y. Deng, M. Chen, Y. Zhao, W. Zou and Q. Zhao, RSC Adv., 9, 18652 (2019); https://doi.org/10.1039/C9RA03250A
J. Huo, C. Yuan and Y. Wang, ACS Appl. Nano Mater., 2, 2713 (2019); https://doi.org/10.1021/acsanm.9b00215
Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao and J. Ma, Carbon, 50, 4093 (2012); https://doi.org/10.1016/j.carbon.2012.04.057
V.Q. Hieu, T.K. Phung, T.-Q. Nguyen, A. Khan, V.D. Doan, V.A. Tran and V.T. Le, Chemosphere, 276, 130154 (2021); https://doi.org/10.1016/j.chemosphere.2021.130154
C. Guo, J. Xu, Y. He, Y. Zhang and Y. Wang, Appl. Surf. Sci., 257, 3798 (2011); https://doi.org/10.1016/j.apsusc.2010.11.152