Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Crystal Violet Dye Adsorption from Aqueous Solution using Activated Chickpea Husk (Cicer arientum)
Corresponding Author(s) : Sudesh Chaudhary
Asian Journal of Chemistry,
Vol. 34 No. 1 (2022): Vol 34 Issue 1, 2022
Abstract
The chickpea husk (Cicer arientum) were activated by chemical modification with sulphuric acid, for its application as biosorbent for the remediation of crystal violet dye from wastewater. Activated chickpea husk (ACH) was characterized for its chemical structure and morphology using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The after effects of leading affecting parameters like dose of adsorbent, time of contact, pH and concentration were studied by commencing experiments in batch mode. Adsorption mechanism and sorption efficiency of ACH was examined using variety of isotherms (Langmuir & Freundlich) and kinetic models (pseudo first order and pseudo second order). Experimental data for adsorption rate was in good harmony with the results obtained using pseudo second order model. The adsorption capacity determined using Langmuir isotherm and pseudo second order model was found to be 142.85 mg/g.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Mancosu, R.L. Snyder, G. Kyriakakis and D. Spano, Water, 7, 975 (2015); https://doi.org/10.3390/w7030975
- M. Kummu, J.H.A. Guillaume, H. de Moel, S. Eisner, M. Flörke, M. Porkka, S. Siebert, T.I.E. Veldkamp and P.J. Ward, Sci. Rep., 6, 38495 (2016); https://doi.org/10.1038/srep38495
- K. Kadirvelu, K. Thamaraiselvi and C. Namasivayam, Bioresour. Technol., 76, 63 (2001); https://doi.org/10.1016/S0960-8524(00)00072-9
- J. Briffa, E. Sinagra and R. Blundell, Heliyon, 6, e04691 (2020); https://doi.org/10.1016/j.heliyon.2020.e04691
- M.M. Alam, M.A. Hossain, M.D. Hossain, M.A.H. Johir, J. Hossen, M.S. Rahman, J.L. Zhou, A.T.M. Hasan, A.K. Karmakar and M.B. Ahmed, Processes, 8, 203 (2020); https://doi.org/10.3390/pr8020203
- S. Liu, H. Ge, C. Wang, Y. Zou and J. Liu, Sci. Total Environ., 628, 959 (2018); https://doi.org/10.1016/j.scitotenv.2018.02.134
- L.F. Cusioli, H.B. Quesada, A.T.A. Baptista, R.G. Gomes and R. Bergamasco, Environ. Prog. Sustain. Energy, 39, e13328 (2020); https://doi.org/10.1002/ep.13328
- Q. Tian, X. Wang, F. Mao and X. Guo, J. Cent. South Univ., 25, 709 (2018); https://doi.org/10.1007/s11771-018-3775-y
- D.A. Giannakoudakis, G.Z. Kyzas, A. Avranas and N.K. Lazaridis, J. Mol. Liq., 213, 381 (2016); https://doi.org/10.1016/j.molliq.2015.07.010
- V.K. Gupta, D. Pathania, S. Sharma and P. Singh, J. Colloid Interface Sci., 401, 125 (2013); https://doi.org/10.1016/j.jcis.2013.03.020
- P. Roccaro, G. Lombardo and F.G.A. Vagliasindi, Desalin. Water Treat., 55, 756 (2015); https://doi.org/10.1080/19443994.2014.964328
- C.-H. Weng and Y.-F. Pan, J. Hazard. Mater., 144, 355 (2007); https://doi.org/10.1016/j.jhazmat.2006.09.097
- J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla and M. Sánchez-Polo, J. Environ. Manage., 85, 833 (2007); https://doi.org/10.1016/j.jenvman.2007.07.031
- S. Kumagai, Y. Shimizu, Y. Toida and Y. Enda, Fuel, 88, 1975 (2009); https://doi.org/10.1016/j.fuel.2009.03.016
- S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma, C.L. Lee and H.A. Chase, J. Clean. Prod., 162, 1376 (2017); https://doi.org/10.1016/j.jclepro.2017.06.131
- U.T. Un and F. Ates, Int. J. Environ. Sci. Technol., 16, 899 (2019); https://doi.org/10.1007/s13762-018-1716-9
- D. Kalderis, S. Bethanis, P. Paraskeva and E. Diamadopoulos, Bioresour. Technol., 99, 6809 (2008); https://doi.org/10.1016/j.biortech.2008.01.041
- L. Hevira, Zilfa, Rahmayeni, J.O. Ighalo and R. Zein, J. Environ. Chem. Eng., 8, 104290 (2020); https://doi.org/10.1016/j.jece.2020.104290
- J. Rojas, D. Suarez, A. Moreno, J. Silva-Agredo and R.A. Torres-Palma, Appl. Sci., 9, 5337 (2019); https://doi.org/10.3390/app9245337
- Y.A.B. Neolaka, G. Supriyanto and H.S. Kusuma, J. Environ. Chem. Eng., 6, 3436 (2018); https://doi.org/10.1016/j.jece.2018.04.053
- E.P. Kuncoro, D.R.M. Isnadina, H. Darmokoesoemo, O.R. Fauziah, H.S. Kusuma, Data Brief, 16, 622 (2018); https://doi.org/10.1016/j.dib.2017.11.098
- Y.A.B. Neolaka, Y. Lawa, J.N. Naat, A.A. Pau Riwu, H. Darmokoesoemo, G. Supriyanto, C.I. Holdsworth, A.N. Amenaghawon and H.S. Kusuma, React. Funct. Polym., 147, 104451 (2020); https://doi.org/10.1016/j.reactfunctpolym.2019.104451
- R.H. Hesas, A. Arami-Niya, W.M.A.W. Daud and J.N. Sahu, BioResources, 8, 2950 (2013).
- S. Liang, X. Guo, N. Feng and Q. Tian, J. Hazard. Mater., 174, 756 (2010); https://doi.org/10.1016/j.jhazmat.2009.09.116
- E. Ghasemian and Z. Palizban, Int. J. Environ. Sci. Technol., 13, 501 (2016); https://doi.org/10.1007/s13762-015-0875-1
- E. Daneshvar, M.S. Sohrabi, M. Kousha, A. Bhatnagar, B. Aliakbarian, A. Converti and A.-C. Norrström, J. Taiwan Inst. Chem. Eng., 45, 2926 (2014); https://doi.org/10.1016/j.jtice.2014.09.019
- R.K. Gautam, V. Rawat, S. Banerjee, M.A. Sanroman, S. Soni, S.K. Singh and M.C. Chattopadhyaya, J. Mol. Liq., 212, 227 (2015); https://doi.org/10.1016/j.molliq.2015.09.006
- Y. Zhang, J. Zhao, Z. Jiang, D. Shan and Y. Lu, BioMed Res. Int., 2014, 973095 (2014); https://doi.org/10.1155/2014/973095
- M.A. Rahman, S.M.R. Amin and A.M.S. Alam, Dhaka Univ. J. Sci., 60, 185 (2012); https://doi.org/10.3329/dujs.v60i2.11491
- W. Wang and J. Wang, Chemosphere, 193, 567 (2018); https://doi.org/10.1016/j.chemosphere.2017.11.078
- S. Zhang, Z. Wang, Y. Zhang, H. Pan and L. Tao, Proc. Environ. Sci., 31, 3 (2016); https://doi.org/10.1016/j.proenv.2016.02.001
- F. Adam, J.N. Appaturi, Z. Khanam, R. Thankappan and M.A.M. Nawi, Appl. Surf. Sci., 264, 718 (2013); https://doi.org/10.1016/j.apsusc.2012.10.106
- N. Laskar and U. Kumar, KSCE J. Civ. Eng., 22, 2755 (2018); https://doi.org/10.1007/s12205-017-0473-5
- P.P. Kyi, J.O. Quansah, C.G. Lee, J.K. Moon and S.J. Park, Appl. Sci., 10, 2251 (2020); https://doi.org/10.3390/app10072251
- M. Sulyman, J. Namieœnik and A. Gierak, Eng. Prot. Environ., 19, 611 (2016); https://doi.org/10.17512/ios.2016.4.14
- C.A. Basar, J. Hazard. Mater., 135, 232 (2006); https://doi.org/10.1016/j.jhazmat.2005.11.055
- T. Depci, A.R. Kul, Y. Onal, E. Disli, S. Alkan and Z.F. Turkmenoglu, Physicochem. Probl. Miner. Process., 48, 253 (2012).
- R. Kumar and R. Ahmad, Desalination, 265, 112 (2011); https://doi.org/10.1016/j.desal.2010.07.040
- M. Abbas, Z. Harrache and M. Trari, J. Eng. Fibers Fabr., 15, 1 (2020); https://doi.org/10.1177/1558925020919847
- C. Kannan, N. Buvaneswari and T. Palvannan, Desalination, 249, 1132 (2009); https://doi.org/10.1016/j.desal.2009.06.042
References
N. Mancosu, R.L. Snyder, G. Kyriakakis and D. Spano, Water, 7, 975 (2015); https://doi.org/10.3390/w7030975
M. Kummu, J.H.A. Guillaume, H. de Moel, S. Eisner, M. Flörke, M. Porkka, S. Siebert, T.I.E. Veldkamp and P.J. Ward, Sci. Rep., 6, 38495 (2016); https://doi.org/10.1038/srep38495
K. Kadirvelu, K. Thamaraiselvi and C. Namasivayam, Bioresour. Technol., 76, 63 (2001); https://doi.org/10.1016/S0960-8524(00)00072-9
J. Briffa, E. Sinagra and R. Blundell, Heliyon, 6, e04691 (2020); https://doi.org/10.1016/j.heliyon.2020.e04691
M.M. Alam, M.A. Hossain, M.D. Hossain, M.A.H. Johir, J. Hossen, M.S. Rahman, J.L. Zhou, A.T.M. Hasan, A.K. Karmakar and M.B. Ahmed, Processes, 8, 203 (2020); https://doi.org/10.3390/pr8020203
S. Liu, H. Ge, C. Wang, Y. Zou and J. Liu, Sci. Total Environ., 628, 959 (2018); https://doi.org/10.1016/j.scitotenv.2018.02.134
L.F. Cusioli, H.B. Quesada, A.T.A. Baptista, R.G. Gomes and R. Bergamasco, Environ. Prog. Sustain. Energy, 39, e13328 (2020); https://doi.org/10.1002/ep.13328
Q. Tian, X. Wang, F. Mao and X. Guo, J. Cent. South Univ., 25, 709 (2018); https://doi.org/10.1007/s11771-018-3775-y
D.A. Giannakoudakis, G.Z. Kyzas, A. Avranas and N.K. Lazaridis, J. Mol. Liq., 213, 381 (2016); https://doi.org/10.1016/j.molliq.2015.07.010
V.K. Gupta, D. Pathania, S. Sharma and P. Singh, J. Colloid Interface Sci., 401, 125 (2013); https://doi.org/10.1016/j.jcis.2013.03.020
P. Roccaro, G. Lombardo and F.G.A. Vagliasindi, Desalin. Water Treat., 55, 756 (2015); https://doi.org/10.1080/19443994.2014.964328
C.-H. Weng and Y.-F. Pan, J. Hazard. Mater., 144, 355 (2007); https://doi.org/10.1016/j.jhazmat.2006.09.097
J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla and M. Sánchez-Polo, J. Environ. Manage., 85, 833 (2007); https://doi.org/10.1016/j.jenvman.2007.07.031
S. Kumagai, Y. Shimizu, Y. Toida and Y. Enda, Fuel, 88, 1975 (2009); https://doi.org/10.1016/j.fuel.2009.03.016
S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma, C.L. Lee and H.A. Chase, J. Clean. Prod., 162, 1376 (2017); https://doi.org/10.1016/j.jclepro.2017.06.131
U.T. Un and F. Ates, Int. J. Environ. Sci. Technol., 16, 899 (2019); https://doi.org/10.1007/s13762-018-1716-9
D. Kalderis, S. Bethanis, P. Paraskeva and E. Diamadopoulos, Bioresour. Technol., 99, 6809 (2008); https://doi.org/10.1016/j.biortech.2008.01.041
L. Hevira, Zilfa, Rahmayeni, J.O. Ighalo and R. Zein, J. Environ. Chem. Eng., 8, 104290 (2020); https://doi.org/10.1016/j.jece.2020.104290
J. Rojas, D. Suarez, A. Moreno, J. Silva-Agredo and R.A. Torres-Palma, Appl. Sci., 9, 5337 (2019); https://doi.org/10.3390/app9245337
Y.A.B. Neolaka, G. Supriyanto and H.S. Kusuma, J. Environ. Chem. Eng., 6, 3436 (2018); https://doi.org/10.1016/j.jece.2018.04.053
E.P. Kuncoro, D.R.M. Isnadina, H. Darmokoesoemo, O.R. Fauziah, H.S. Kusuma, Data Brief, 16, 622 (2018); https://doi.org/10.1016/j.dib.2017.11.098
Y.A.B. Neolaka, Y. Lawa, J.N. Naat, A.A. Pau Riwu, H. Darmokoesoemo, G. Supriyanto, C.I. Holdsworth, A.N. Amenaghawon and H.S. Kusuma, React. Funct. Polym., 147, 104451 (2020); https://doi.org/10.1016/j.reactfunctpolym.2019.104451
R.H. Hesas, A. Arami-Niya, W.M.A.W. Daud and J.N. Sahu, BioResources, 8, 2950 (2013).
S. Liang, X. Guo, N. Feng and Q. Tian, J. Hazard. Mater., 174, 756 (2010); https://doi.org/10.1016/j.jhazmat.2009.09.116
E. Ghasemian and Z. Palizban, Int. J. Environ. Sci. Technol., 13, 501 (2016); https://doi.org/10.1007/s13762-015-0875-1
E. Daneshvar, M.S. Sohrabi, M. Kousha, A. Bhatnagar, B. Aliakbarian, A. Converti and A.-C. Norrström, J. Taiwan Inst. Chem. Eng., 45, 2926 (2014); https://doi.org/10.1016/j.jtice.2014.09.019
R.K. Gautam, V. Rawat, S. Banerjee, M.A. Sanroman, S. Soni, S.K. Singh and M.C. Chattopadhyaya, J. Mol. Liq., 212, 227 (2015); https://doi.org/10.1016/j.molliq.2015.09.006
Y. Zhang, J. Zhao, Z. Jiang, D. Shan and Y. Lu, BioMed Res. Int., 2014, 973095 (2014); https://doi.org/10.1155/2014/973095
M.A. Rahman, S.M.R. Amin and A.M.S. Alam, Dhaka Univ. J. Sci., 60, 185 (2012); https://doi.org/10.3329/dujs.v60i2.11491
W. Wang and J. Wang, Chemosphere, 193, 567 (2018); https://doi.org/10.1016/j.chemosphere.2017.11.078
S. Zhang, Z. Wang, Y. Zhang, H. Pan and L. Tao, Proc. Environ. Sci., 31, 3 (2016); https://doi.org/10.1016/j.proenv.2016.02.001
F. Adam, J.N. Appaturi, Z. Khanam, R. Thankappan and M.A.M. Nawi, Appl. Surf. Sci., 264, 718 (2013); https://doi.org/10.1016/j.apsusc.2012.10.106
N. Laskar and U. Kumar, KSCE J. Civ. Eng., 22, 2755 (2018); https://doi.org/10.1007/s12205-017-0473-5
P.P. Kyi, J.O. Quansah, C.G. Lee, J.K. Moon and S.J. Park, Appl. Sci., 10, 2251 (2020); https://doi.org/10.3390/app10072251
M. Sulyman, J. Namieœnik and A. Gierak, Eng. Prot. Environ., 19, 611 (2016); https://doi.org/10.17512/ios.2016.4.14
C.A. Basar, J. Hazard. Mater., 135, 232 (2006); https://doi.org/10.1016/j.jhazmat.2005.11.055
T. Depci, A.R. Kul, Y. Onal, E. Disli, S. Alkan and Z.F. Turkmenoglu, Physicochem. Probl. Miner. Process., 48, 253 (2012).
R. Kumar and R. Ahmad, Desalination, 265, 112 (2011); https://doi.org/10.1016/j.desal.2010.07.040
M. Abbas, Z. Harrache and M. Trari, J. Eng. Fibers Fabr., 15, 1 (2020); https://doi.org/10.1177/1558925020919847
C. Kannan, N. Buvaneswari and T. Palvannan, Desalination, 249, 1132 (2009); https://doi.org/10.1016/j.desal.2009.06.042