Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chemical Profiling of Crush, Tear, Curl (CTC) Tea Waste of Eastern Sub-Himalayan Regions: An Elemental and Spectroscopic Analysis
Corresponding Author(s) : Monoranjan Chowdhury
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
Tea is not only the most popular beverage in the world but also producing a large quantity untreated wastes product every year. In particular, the tea gardens of eastern Sub-Himalayan region cumulatively produce 15 million kg of crush, tear, curl (CTC)-factory tea waste (FTW) every year, which primarily includes discarded tea leaves, leaf fibers, buds and tender stems of tea plants. Beside that ~ 80% population of Indian subcontinent consume CTC tea regularly at their homes, tea stalls, market, cafe etc. and the waste produced from it, is called CTC domestic tea waste (DTW). Thus, not only factory tea waste but also a large quantity of domestic CTC tea waste (DTW) is exposed into the environment regularly. In present study, an attempt has been made for primary screening of the compounds in both the CTC-tea wastes. It has been shown that FTW sample contains greater amount of non-metal elements such as sulfur, calcium, phosphorus and metal elements like potassium and iron compared to DTW sample. Abundance of aromatic compounds has been seen to be higher in FTWs whereas, DTW primarily contains aliphatic compounds. Using Orbitrap-HRLCMS analysis allowed to make accurate predictions about the molecular structures of the likely organic chemicals found in tea trash. Thus, various bioactive organic compounds, micronutrients and trace elements from tea waste were found.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Sarkar, A. Chowdhury, S. Das, B. Chakraborty, P. Mandal and M. Chowdhury, Int. J. Bioassays, 5, 5071 (2016); https://doi.org/10.21746/ijbio.2016.11.0015
- A. Chowdhury, S. Sarkar, A. Chowdhury, S. Bardhan, P. Mandal and M. Chowdhury, Indian J. Sci. Technol., 42, 1 (2016); https://doi.org/10.17485/ijst/2016/v9i42/89790
- P.Q. Tranchida, R.A. Shellie, G. Purcaro, L.S. Conte, P. Dugo, G. Dugo and L. Mondello, J. Chromatogr. Sci., 48, 262 (2010); https://doi.org/10.1093/chromsci/48.4.262
- R. Joshi and R. Poonam, Nat. Prod. Commun., 6, 1155 (2011).
- S. Baldermann, Z. Yang, T. Katsuno, T.V. Tu, N. Mase, Y. Nakamura and N. Watanabe, Am. J. Anal. Chem., 5, 620 (2014); https://doi.org/10.4236/ajac.2014.59070
- S.C. Qin, J.L. Li, A. Kareem and Y. Wang, HortScience, 54, 1288 (2019); https://doi.org/10.21273/HORTSCI14079-19
- A.C. Agca, N. Vural and E. Sarer, Istan. J. Pharm., 50, 111 (2020); https://doi.org/10.26650/IstanbulJPharm.2019.0075
- F. Malongane, L.J. McGaw, L.K. Debusho and F.N. Mudau, Foods, 9, 496 (2020); https://doi.org/10.3390/foods9040496
- S.R. Senthilkumar, T. Sivakumar, K.T. Arulmozhi, N. Mythili, Asian J. Pharm. Clin. Res., 8, 278 (2015).
- H. Matsuura, A. Hokura, F. Katsuki, A. Itoh and H. Haraguchi, Anal. Sci., 17, 391 (2001); https://doi.org/10.2116/analsci.17.391
- N.S. Mokgalaka, R.I. McCrindle and B.M. Botha, J. Anal. At. Spectrom., 19, 1375 (2004); https://doi.org/10.1039/b407416e
- Q. Han, S. Mihara, K. Hashimoto and T. Fujino, Food Sci. Technol. Res., 20, 1109 (2014); https://doi.org/10.3136/fstr.20.1109
- R.F. Milani, M.A. Morgano, E.S. Saron, F.F. Silvac and S. Cadore, J. Braz. Chem. Soc., 26, 1211 (2015); https://doi.org/10.5935/0103-5053.20150085
- A. Szymczycha-Madeja, M. Welna and P. Pohl, Biol. Trace Elem. Res., 195, 272 (2020); https://doi.org/10.1007/s12011-019-01828-x
- P. Pohl, A. Szymczycha-Madeja and M. Welna, Arab. J. Chem., 13, 1955 (2020); https://doi.org/10.1016/j.arabjc.2018.02.013
- A.L. Davis, Y. Cai, A.P. Davies and J.R. Lewis, Mag. Reson.Chem., 34, 887 (1996); https://doi.org/10.1002/(SICI)1097-458X(199611)34:11<887::AIDOMR995>3.0.CO;2-U
- L. Tarachiwin, K. Ute, A. Kobayashi and E. Fukusaki, J. Agric. Food Chem., 55, 9330 (2007); https://doi.org/10.1021/jf071956x
- J.E. Lee, B.J. Lee, J.O. Chung, H.J. Shin, S.J. Lee, C.H. Lee and Y.S. Hong, Food Res. Int., 44, 597 (2011); https://doi.org/10.1016/j.foodres.2010.12.004
- T. Hasegawaa, K. Akutsua, Y. Kishia and K. Nakamurab, Nat. Prod. Commun., 6, 371 (2011).
- A.B. Uryupin and A.S. Peregudov, J. Anal. Chem., 68, 1021 (2013); https://doi.org/10.1134/S1061934813120125
- D.S.C. Wahyuni, M.W. Kristanti, R.K. Putri and Y. Rinanto, J. Phys. Conf. Ser., 795, 012013 (2017); https://doi.org/10.1088/1742-6596/795/1/012013
- K.H. Choi and J.H. Lee, Mag. Reson. Soc., 22, 132 (2018); https://doi.org/10.6564/JKMRS.2018.22.4.132
- J.H. Jeong, H.J. Jang and Y. Kim, J. Kor. Chem. Soc., 63, 78 (2019); https://doi.org/10.5012/jkcs.2019.63.2.78
- A.P. Sobolev, A. Di Lorenzo, S. Circi, C. Santarcangelo, C. Ingallina, M. Daglia and L. Mannina, Molecules, 26, 5125 (2021); https://doi.org/10.3390/molecules26175125
- J. Ohnsmann, G. Quintás, S. Garrigues and M. de la Guardia, Anal. Bioanal. Chem., 374, 561 (2002); https://doi.org/10.1007/s00216-002-1503-8
- N. Mashkouri Najafi, A.S. Hamid and R.K. Afshin, Microchem. J., 75, 151 (2003); https://doi.org/10.1016/S0026-265X(03)00095-X
- S.R. Senthilkumar, T. Sivakumar, K.T. Arulmozhi and N. Mythili, Int. Res. J. Biol. Sci., 6, 1 (2017).
- X. Li, R. Zhou, K. Xu, J. Xu, J. Jin, H. Fang and Y. He, Molecules, 23, 1010 (2018); https://doi.org/10.3390/molecules23051010
- I. Nugrahani and M. Sundalian, Biointerf. Res. Appl. Chem., 10, 4722 (2020); https://doi.org/10.33263/BRIAC10.1721727
References
S. Sarkar, A. Chowdhury, S. Das, B. Chakraborty, P. Mandal and M. Chowdhury, Int. J. Bioassays, 5, 5071 (2016); https://doi.org/10.21746/ijbio.2016.11.0015
A. Chowdhury, S. Sarkar, A. Chowdhury, S. Bardhan, P. Mandal and M. Chowdhury, Indian J. Sci. Technol., 42, 1 (2016); https://doi.org/10.17485/ijst/2016/v9i42/89790
P.Q. Tranchida, R.A. Shellie, G. Purcaro, L.S. Conte, P. Dugo, G. Dugo and L. Mondello, J. Chromatogr. Sci., 48, 262 (2010); https://doi.org/10.1093/chromsci/48.4.262
R. Joshi and R. Poonam, Nat. Prod. Commun., 6, 1155 (2011).
S. Baldermann, Z. Yang, T. Katsuno, T.V. Tu, N. Mase, Y. Nakamura and N. Watanabe, Am. J. Anal. Chem., 5, 620 (2014); https://doi.org/10.4236/ajac.2014.59070
S.C. Qin, J.L. Li, A. Kareem and Y. Wang, HortScience, 54, 1288 (2019); https://doi.org/10.21273/HORTSCI14079-19
A.C. Agca, N. Vural and E. Sarer, Istan. J. Pharm., 50, 111 (2020); https://doi.org/10.26650/IstanbulJPharm.2019.0075
F. Malongane, L.J. McGaw, L.K. Debusho and F.N. Mudau, Foods, 9, 496 (2020); https://doi.org/10.3390/foods9040496
S.R. Senthilkumar, T. Sivakumar, K.T. Arulmozhi, N. Mythili, Asian J. Pharm. Clin. Res., 8, 278 (2015).
H. Matsuura, A. Hokura, F. Katsuki, A. Itoh and H. Haraguchi, Anal. Sci., 17, 391 (2001); https://doi.org/10.2116/analsci.17.391
N.S. Mokgalaka, R.I. McCrindle and B.M. Botha, J. Anal. At. Spectrom., 19, 1375 (2004); https://doi.org/10.1039/b407416e
Q. Han, S. Mihara, K. Hashimoto and T. Fujino, Food Sci. Technol. Res., 20, 1109 (2014); https://doi.org/10.3136/fstr.20.1109
R.F. Milani, M.A. Morgano, E.S. Saron, F.F. Silvac and S. Cadore, J. Braz. Chem. Soc., 26, 1211 (2015); https://doi.org/10.5935/0103-5053.20150085
A. Szymczycha-Madeja, M. Welna and P. Pohl, Biol. Trace Elem. Res., 195, 272 (2020); https://doi.org/10.1007/s12011-019-01828-x
P. Pohl, A. Szymczycha-Madeja and M. Welna, Arab. J. Chem., 13, 1955 (2020); https://doi.org/10.1016/j.arabjc.2018.02.013
A.L. Davis, Y. Cai, A.P. Davies and J.R. Lewis, Mag. Reson.Chem., 34, 887 (1996); https://doi.org/10.1002/(SICI)1097-458X(199611)34:11<887::AIDOMR995>3.0.CO;2-U
L. Tarachiwin, K. Ute, A. Kobayashi and E. Fukusaki, J. Agric. Food Chem., 55, 9330 (2007); https://doi.org/10.1021/jf071956x
J.E. Lee, B.J. Lee, J.O. Chung, H.J. Shin, S.J. Lee, C.H. Lee and Y.S. Hong, Food Res. Int., 44, 597 (2011); https://doi.org/10.1016/j.foodres.2010.12.004
T. Hasegawaa, K. Akutsua, Y. Kishia and K. Nakamurab, Nat. Prod. Commun., 6, 371 (2011).
A.B. Uryupin and A.S. Peregudov, J. Anal. Chem., 68, 1021 (2013); https://doi.org/10.1134/S1061934813120125
D.S.C. Wahyuni, M.W. Kristanti, R.K. Putri and Y. Rinanto, J. Phys. Conf. Ser., 795, 012013 (2017); https://doi.org/10.1088/1742-6596/795/1/012013
K.H. Choi and J.H. Lee, Mag. Reson. Soc., 22, 132 (2018); https://doi.org/10.6564/JKMRS.2018.22.4.132
J.H. Jeong, H.J. Jang and Y. Kim, J. Kor. Chem. Soc., 63, 78 (2019); https://doi.org/10.5012/jkcs.2019.63.2.78
A.P. Sobolev, A. Di Lorenzo, S. Circi, C. Santarcangelo, C. Ingallina, M. Daglia and L. Mannina, Molecules, 26, 5125 (2021); https://doi.org/10.3390/molecules26175125
J. Ohnsmann, G. Quintás, S. Garrigues and M. de la Guardia, Anal. Bioanal. Chem., 374, 561 (2002); https://doi.org/10.1007/s00216-002-1503-8
N. Mashkouri Najafi, A.S. Hamid and R.K. Afshin, Microchem. J., 75, 151 (2003); https://doi.org/10.1016/S0026-265X(03)00095-X
S.R. Senthilkumar, T. Sivakumar, K.T. Arulmozhi and N. Mythili, Int. Res. J. Biol. Sci., 6, 1 (2017).
X. Li, R. Zhou, K. Xu, J. Xu, J. Jin, H. Fang and Y. He, Molecules, 23, 1010 (2018); https://doi.org/10.3390/molecules23051010
I. Nugrahani and M. Sundalian, Biointerf. Res. Appl. Chem., 10, 4722 (2020); https://doi.org/10.33263/BRIAC10.1721727