Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antimicrobial Activity of Nanochitosan and Chitosan Encapsulated Zinc Oxide Nanoparticles
Corresponding Author(s) : Sivanthaperumal
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
In recent years, nanochitosan and chitosan encapsulated zinc oxide nanoparticles have gained tremendous attention related to their unique properties such as exhibit antimicrobial properties. In this article, synthesis of nanochitosan, chitosan encapsulated zinc oxide and compared their potential applications as an antimicrobial agents were discussed. The nanochitosan and chitosan encapsulated zinc oxide nanoparticles have been characterized by ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) techniques.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Singh, H.G. Kruger, G.E.M. Maguire, T. Govender and R. Parboosing, Ther. Adv. Infect. Dis., 4, 105 (2017); https://doi.org/10.1177/2049936117713593
- S.A. Agnihotri, N.N. Mallikarjuna and T.M. Aminabhavi, J. Control. Release, 100, 5 (2004); https://doi.org/10.1016/j.jconrel.2004.08.010
- K.M. Aiedeh, M.O. Taha and H. Al-Khatib, J. Drug Deliv. Sci. Technol., 15, 207 (2005); https://doi.org/10.1016/S1773-2247(05)50033-9
- S.K. Shukla, A.K. Mishra, O.A. Arotiba and B.B. Mamba, Int. J. Biol. Macromol., 59, 46 (2013); https://doi.org/10.1016/j.ijbiomac.2013.04.043
- J.H. Ryu, S. Hong and H. Lee, Acta Biomater., 27, 101 (2015); https://doi.org/10.1016/j.actbio.2015.08.043
- F.J. Osonga, A. Akgul, I. Yazgan, A. Akgul, G.B. Eshun, L. Sakhaee and O.A. Sadik, Molecules, 25, 2682 (2020); https://doi.org/10.3390/molecules25112682
- M. Rai, A. Yadav and A. Gade, Biotechnol. Adv., 27, 76 (2009); https://doi.org/10.1016/j.biotechadv.2008.09.002
- J. Sawai, J. Microbiol. Methods, 54, 177 (2003); https://doi.org/10.1016/S0167-7012(03)00037-X
- C.R. Mendes, G. Dilarri, C.F. Forsan, V.M.R. Sapata, P.R. Matos Lopes, P.B. de Moraes, R.N. Montagnolli, H. Ferreira and E.D. Bidoia, Sci. Rep., 12, 2658 (2022); https://doi.org/10.1038/s41598-022-06657-y
- C.J. Frederickson, J.Y. Koh and A.I. Bush, Nat. Rev. Neurosci., 6, 449 (2005); https://doi.org/10.1038/nrn1671
- S.A. Kelly, C.M. Havrilla, T.C. Brady, K.H. Abramo and E.D. Levin, Environ. Health Perspect., 106, 375 (1998); https://doi.org/10.1289/ehp.98106375
- L.E. Rikans and K.R. Hornbrook, Biochim. Biophys. Acta, 1362, 116 (1997); https://doi.org/10.1016/S0925-4439(97)00067-7
- L. Zhang, Y. Jiang, Y. Ding, M. Povey and D. York, J. Nanopart. Res., 9, 479 (2007); https://doi.org/10.1007/s11051-006-9150-1
- R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti and F. Fiévet, Nano Lett., 6, 866 (2006); https://doi.org/10.1021/nl052326h
- P.K. Stoimenov, R.L. Klinger, G.L. Marchin and K.J. Klabunde, Langmuir, 18, 6679 (2002); https://doi.org/10.1021/la0202374
- T. Jayaramudu, K. Varaprasad, R.D. Pyarasani, K.K. Reddy, K.D. Kumar, A. Akbari-Fakhrabadi, R.V. Mangalaraja and J. Amalraj, Int. J. Biol. Macromol., 128, 499 (2019); https://doi.org/10.1016/j.ijbiomac.2019.01.145
- E.M. Shapiro, Magn. Reson. Med., 73, 376 (2015); https://doi.org/10.1002/mrm.25263
- V.K.H. Bui, D. Park, Y.-C. Lee, V. Gómez and S. Irusta, Polymers, 9, 21 (2017); https://doi.org/10.3390/polym9010021
- N. Othman, M.J. Masarudin, C.Y. Kuen, N.A. Dasuan, L.C. Abdullah and S.N.A.M. Jamil, Nanomaterials, 8, 920 (2018); https://doi.org/10.3390/nano8110920
- S. Logpriya, V. Bhuvaneshwari, D. Vaidehi, R.P. SenthilKumar, R.S. Nithya Malar, B.P. Sheetal, R. Amsaveni and M. Kalaiselvi, J. Nanostruct. Chem., 8, 301 (2018); https://doi.org/10.1007/s40097-018-0273-6
- K.G.H. Desai, C. Liu and H.J. Park, Microencapsulation, 23, 79 (2006); https://doi.org/10.1080/02652040500435360
- K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, S. Fukushima, Y. Sakurai, K. Okamoto and G.S. Kwon, J. Control. Release, 64, 143 (2000); https://doi.org/10.1016/S0168-3659(99)00133-9
- S. Bandara, C. Codi-anne, C. Johnson, F. Akindoju, E. Williams, J.M. Swaby, A. Oki and L.E. Carson, Heliyon, 4, e00737 (2018); https://doi.org/10.1016/j.heliyon.2018.e00737
- S. Vaezifar, S. Razavi, M.A. Golozar, S. Karbasi, M. Morshed and M. Kamali, J. Cluster Sci., 24, 891 (2013); https://doi.org/10.1007/s10876-013-0583-2
- S.T. Lee, F.L. Mi, Y.J. Shen and S.S. Shyu, Polymer, 42, 1879 (2001); https://doi.org/10.1016/S0032-3861(00)00402-X
- K. Rajeshwari, S. Latha, T. Gomathi, K. Sangeetha and P.N. Sudha, Der Pharm. Lett., 8, 485 (2016).
- G.-Y. Li, Y.-R. Jiang, K. Huang, P. Ding and J. Chen, J. Alloys Compd., 466, 451 (2008); https://doi.org/10.1016/j.jallcom.2007.11.100
- M.M. Abd Elhady, Int. J. Carbohydr. Chem., 2012, 840591 (2012); https://doi.org/10.1155/2012/840591
- S. Singh, D. Padovani, R.A. Leslie, T. Chiku and R. Banerjee, J. Biol. Chem., 284, 22457 (2009); https://doi.org/10.1074/jbc.M109.010868
- E.B. Simsek, J. Nat. Appl. Sci., 21, 299 (2017); https://doi.org/10.19113/sdufbed.57694
- J. Zhao and J. Wu, Chin. J. Anal. Chem., 34, 1555 (2006); https://doi.org/10.1016/S1872-2040(07)60015-2
- C. Perez, M. Pauli and P. Bazerque, Acta Biol. Med. Exp., 15, 13 (1990).
- N. Erdemoglu, E. Küpeli and E. Yesilada, J. Ethnopharmacol., 89, 123 (2003); https://doi.org/10.1016/S0378-8741(03)00282-4
- C.F. Bagamboula, M. Uyttendaele and J. Debevere, Food Microbiol., 21, 33 (2004); https://doi.org/10.1016/S0740-0020(03)00046-7
References
L. Singh, H.G. Kruger, G.E.M. Maguire, T. Govender and R. Parboosing, Ther. Adv. Infect. Dis., 4, 105 (2017); https://doi.org/10.1177/2049936117713593
S.A. Agnihotri, N.N. Mallikarjuna and T.M. Aminabhavi, J. Control. Release, 100, 5 (2004); https://doi.org/10.1016/j.jconrel.2004.08.010
K.M. Aiedeh, M.O. Taha and H. Al-Khatib, J. Drug Deliv. Sci. Technol., 15, 207 (2005); https://doi.org/10.1016/S1773-2247(05)50033-9
S.K. Shukla, A.K. Mishra, O.A. Arotiba and B.B. Mamba, Int. J. Biol. Macromol., 59, 46 (2013); https://doi.org/10.1016/j.ijbiomac.2013.04.043
J.H. Ryu, S. Hong and H. Lee, Acta Biomater., 27, 101 (2015); https://doi.org/10.1016/j.actbio.2015.08.043
F.J. Osonga, A. Akgul, I. Yazgan, A. Akgul, G.B. Eshun, L. Sakhaee and O.A. Sadik, Molecules, 25, 2682 (2020); https://doi.org/10.3390/molecules25112682
M. Rai, A. Yadav and A. Gade, Biotechnol. Adv., 27, 76 (2009); https://doi.org/10.1016/j.biotechadv.2008.09.002
J. Sawai, J. Microbiol. Methods, 54, 177 (2003); https://doi.org/10.1016/S0167-7012(03)00037-X
C.R. Mendes, G. Dilarri, C.F. Forsan, V.M.R. Sapata, P.R. Matos Lopes, P.B. de Moraes, R.N. Montagnolli, H. Ferreira and E.D. Bidoia, Sci. Rep., 12, 2658 (2022); https://doi.org/10.1038/s41598-022-06657-y
C.J. Frederickson, J.Y. Koh and A.I. Bush, Nat. Rev. Neurosci., 6, 449 (2005); https://doi.org/10.1038/nrn1671
S.A. Kelly, C.M. Havrilla, T.C. Brady, K.H. Abramo and E.D. Levin, Environ. Health Perspect., 106, 375 (1998); https://doi.org/10.1289/ehp.98106375
L.E. Rikans and K.R. Hornbrook, Biochim. Biophys. Acta, 1362, 116 (1997); https://doi.org/10.1016/S0925-4439(97)00067-7
L. Zhang, Y. Jiang, Y. Ding, M. Povey and D. York, J. Nanopart. Res., 9, 479 (2007); https://doi.org/10.1007/s11051-006-9150-1
R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti and F. Fiévet, Nano Lett., 6, 866 (2006); https://doi.org/10.1021/nl052326h
P.K. Stoimenov, R.L. Klinger, G.L. Marchin and K.J. Klabunde, Langmuir, 18, 6679 (2002); https://doi.org/10.1021/la0202374
T. Jayaramudu, K. Varaprasad, R.D. Pyarasani, K.K. Reddy, K.D. Kumar, A. Akbari-Fakhrabadi, R.V. Mangalaraja and J. Amalraj, Int. J. Biol. Macromol., 128, 499 (2019); https://doi.org/10.1016/j.ijbiomac.2019.01.145
E.M. Shapiro, Magn. Reson. Med., 73, 376 (2015); https://doi.org/10.1002/mrm.25263
V.K.H. Bui, D. Park, Y.-C. Lee, V. Gómez and S. Irusta, Polymers, 9, 21 (2017); https://doi.org/10.3390/polym9010021
N. Othman, M.J. Masarudin, C.Y. Kuen, N.A. Dasuan, L.C. Abdullah and S.N.A.M. Jamil, Nanomaterials, 8, 920 (2018); https://doi.org/10.3390/nano8110920
S. Logpriya, V. Bhuvaneshwari, D. Vaidehi, R.P. SenthilKumar, R.S. Nithya Malar, B.P. Sheetal, R. Amsaveni and M. Kalaiselvi, J. Nanostruct. Chem., 8, 301 (2018); https://doi.org/10.1007/s40097-018-0273-6
K.G.H. Desai, C. Liu and H.J. Park, Microencapsulation, 23, 79 (2006); https://doi.org/10.1080/02652040500435360
K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, S. Fukushima, Y. Sakurai, K. Okamoto and G.S. Kwon, J. Control. Release, 64, 143 (2000); https://doi.org/10.1016/S0168-3659(99)00133-9
S. Bandara, C. Codi-anne, C. Johnson, F. Akindoju, E. Williams, J.M. Swaby, A. Oki and L.E. Carson, Heliyon, 4, e00737 (2018); https://doi.org/10.1016/j.heliyon.2018.e00737
S. Vaezifar, S. Razavi, M.A. Golozar, S. Karbasi, M. Morshed and M. Kamali, J. Cluster Sci., 24, 891 (2013); https://doi.org/10.1007/s10876-013-0583-2
S.T. Lee, F.L. Mi, Y.J. Shen and S.S. Shyu, Polymer, 42, 1879 (2001); https://doi.org/10.1016/S0032-3861(00)00402-X
K. Rajeshwari, S. Latha, T. Gomathi, K. Sangeetha and P.N. Sudha, Der Pharm. Lett., 8, 485 (2016).
G.-Y. Li, Y.-R. Jiang, K. Huang, P. Ding and J. Chen, J. Alloys Compd., 466, 451 (2008); https://doi.org/10.1016/j.jallcom.2007.11.100
M.M. Abd Elhady, Int. J. Carbohydr. Chem., 2012, 840591 (2012); https://doi.org/10.1155/2012/840591
S. Singh, D. Padovani, R.A. Leslie, T. Chiku and R. Banerjee, J. Biol. Chem., 284, 22457 (2009); https://doi.org/10.1074/jbc.M109.010868
E.B. Simsek, J. Nat. Appl. Sci., 21, 299 (2017); https://doi.org/10.19113/sdufbed.57694
J. Zhao and J. Wu, Chin. J. Anal. Chem., 34, 1555 (2006); https://doi.org/10.1016/S1872-2040(07)60015-2
C. Perez, M. Pauli and P. Bazerque, Acta Biol. Med. Exp., 15, 13 (1990).
N. Erdemoglu, E. Küpeli and E. Yesilada, J. Ethnopharmacol., 89, 123 (2003); https://doi.org/10.1016/S0378-8741(03)00282-4
C.F. Bagamboula, M. Uyttendaele and J. Debevere, Food Microbiol., 21, 33 (2004); https://doi.org/10.1016/S0740-0020(03)00046-7