Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Lead Oxide Nanodots Synthesized by Solvothermal and Microwave Assisted Method and its Comparative Characterization
Corresponding Author(s) : Mohd Kashif Aziz
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
This study is focused on synthesis of lead oxide (PbO) nanodots (quantum dots) via two methods viz. microwave-assisted (B) and solvothermal method (A). The results of microwave-assisted method are slightly different in comparison to the solvothermal method. Several techniques, such as Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and selective area electron diffraction (SAED) were used for characterizing PbO nanodots synthesized by both methods. The FTIR peak at 687 cm-1 indicated the formation of the Pb-O-Pb bond. The band gap, calculated with the help of UV data, was ~5.5 eV. The obtained PXRD pattern and miller indices suggested the formation of β-PbO and α-PbO nanoparticles with orthorhombic and tetragonal geometries. The crystallinity of PbO nanodots methods by A and B methods was 96% and 99%, respectively. The average crystallite size (for both samples synthesized by methods A and B) calculated by Debye-Scherrer’s equation was 42 and 38 nm, respectively. Sample A mostly contains α-type lead oxide nanodots, while sample B mainly contains mostly β-type lead oxide nanodots. The average size of nanodots observed from TEM images for samples A and B was 3.7 and 2.7 nm, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.G. Al-Sehemi, A.S. Al-Shihri, A. Kalam, G. Du and T. Ahmad, J. Mol. Struct., 1058, 56 (2014); https://doi.org/10.1016/j.molstruc.2013.10.065
- S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani and F. Rizzolio, Molecules, 25, 112 (2020); https://doi.org/10.3390/molecules25010112
- R.P. Feynman, There's Plenty of Room at the Bottom - An Invitation to Enter a New Field of Physics, Engineering and Science Magazine of California Institute of Technology, vol. 23, p. 22 (1960).
- M. Singh, S. Manikandan and A.K. Kumaraguru, Res. J. Nanosci. Nanotechnol., 1, 1 (2011); https://doi.org/10.3923/rjnn.2011.1.11
- J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne and M.K. Danquah, Beilstein J. Nanotechnol., 9, 1050 (2018); https://doi.org/10.3762/bjnano.9.98
- J.H. Crabtree, R.J. Burchette, R.A. Siddiqi, I.T. Huen, L.L. Hadnott and A. Fishman, Perit. Dial. Int., 23, 368 (2003); https://doi.org/10.1177/089686080302300410
- A. Królikowska, A. Kudelski, A. Michota and J. Bukowska, Surf. Sci., 532–535, 227 (2003); https://doi.org/10.1016/S0039-6028(03)00094-3
- N. Baig, I. Kammakakam and W. Falath, Mater. Adv., 2, 1821 (2021); https://doi.org/10.1039/D0MA00807A
- V. Chandrakala, V. Aruna and G. Angajala, Emergent Mater., (2022); https://doi.org/10.1007/s42247-021-00335-x
- H. Karami, M.A. Karimi, S. Haghdar, A. Sadeghi, R. Mir-Ghasemi and S. Mahdi-Khani, Mater. Chem. Phys., 108, 337 (2008); https://doi.org/10.1016/j.matchemphys.2007.09.045
- A. Thulasiramudu and S. Buddhudu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 323 (2007); https://doi.org/10.1016/j.saa.2006.02.060
- C. Barriga, S. Maffi, L. Peraldo Bicelli and C. Malitesta, J. Power Sources, 34, 353 (1991); https://doi.org/10.1016/0378-7753(91)80101-3
- W.U. Huynh, J.J. Dittmer and A.P. Alivisatos, Science, 295, 2425 (2002); https://doi.org/10.1126/science.1069156
- M.S. Sonmez and R.V. Kumar, Hydrometallurgy, 95, 53 (2009); https://doi.org/10.1016/j.hydromet.2008.04.012
- J. Senvaitiene, J. Smirnova, A. Beganskiene and A. Kareiva, Acta Chim. Slov., 54, 185 (2007).
- B. Jaffe, R.S. Roth and S. Marzullo, J. Res. Natl. Bur. Stand., 55, 239 (1955); https://doi.org/10.6028/jres.055.028
- A. Miri, M. Sarani, A. Hashemzadeh, Z. Mardani and M. Darroudi, Green Chem. Lett. Rev., 11, 567 (2018); https://doi.org/10.1080/17518253.2018.1547926
- G. El-Damrawi and E. Mansour, Physica B, 364, 190 (2005); https://doi.org/10.1016/j.physb.2005.04.012
- E. Casals, S. Vazquez-Campos, N. Bastus and V. Puntes, Trac-Trends Anal. Chem., 27, 672 (2008); https://doi.org/10.1016/j.trac.2008.06.004
- C. McGovern, Nanotechnol. Percept., 6, 155 (2010); https://doi.org/10.4024/N15GO10A.ntp.06.03
- C. Stephenson and A. Hubler, Sci. Rep., 5, 15044 (2015); https://doi.org/10.1038/srep15044
- D. Lyon and A. Hubler, IEEE Trans. Dielectr. Electr. Insul., 20, 1467 (2013); https://doi.org/10.1109/TDEI.2013.6571470
- G. Valenti, E. Rampazzo, S. Bonacchi, L. Petrizza, M. Marcaccio, M. Montalti, L. Prodi and F. Paolucci, J. Am. Chem. Soc., 138, 15935 (2016); https://doi.org/10.1021/jacs.6b08239
- P. Kerativitayanan, J.K. Carrow and A.K. Gaharwar, Adv. Healthcare Mater., 4, 1600 (2015); https://doi.org/10.1002/adhm.201500272
- K.C. Chen, C.W. Wang, Y.I. Lee and H.G. Liu, Colloids Surf. A Physicochem. Eng. Asp., 373, 124 (2011); https://doi.org/10.1016/j.colsurfa.2010.10.035
- S. Ghasemi, M.F. Mousavi, M. Shamsipur and H. Karami, Ultrason. Sonochem., 15, 448 (2008); https://doi.org/10.1016/j.ultsonch.2007.05.006
- L. Shi, Y. Xu and Q. Li, Cryst. Growth Des., 8, 3521 (2008); https://doi.org/10.1021/cg700909v
- M.M. Kashani-Motlagh and M.K. Mahmoudabad, J. Sol-Gel Sci. Technol., 59, 106 (2011); https://doi.org/10.1007/s10971-011-2467-y
- J.C. Schottmiller, J. Appl. Phys., 37, 3505 (1966); https://doi.org/10.1063/1.1708890
- M.S. Chavali and M.P. Nikolova, SN Appl. Sci., 1, 607 (2019); https://doi.org/10.1007/s42452-019-0592-3
- P. Makula, M. Pacia and W. Macyk, J. Phys. Chem. Lett., 9, 6814 (2018); https://doi.org/10.1021/acs.jpclett.8b02892
- V.N. Suryawanshi and M.D. Deshpande, AIP Conf. Proceed., 2335, 080012 (2021); https://doi.org/10.1063/5.0046133
- K.T. Arulmozhi and N. Mythili, AIP Adv., 3, 122122 (2013); https://doi.org/10.1063/1.4858419
References
A.G. Al-Sehemi, A.S. Al-Shihri, A. Kalam, G. Du and T. Ahmad, J. Mol. Struct., 1058, 56 (2014); https://doi.org/10.1016/j.molstruc.2013.10.065
S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani and F. Rizzolio, Molecules, 25, 112 (2020); https://doi.org/10.3390/molecules25010112
R.P. Feynman, There's Plenty of Room at the Bottom - An Invitation to Enter a New Field of Physics, Engineering and Science Magazine of California Institute of Technology, vol. 23, p. 22 (1960).
M. Singh, S. Manikandan and A.K. Kumaraguru, Res. J. Nanosci. Nanotechnol., 1, 1 (2011); https://doi.org/10.3923/rjnn.2011.1.11
J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne and M.K. Danquah, Beilstein J. Nanotechnol., 9, 1050 (2018); https://doi.org/10.3762/bjnano.9.98
J.H. Crabtree, R.J. Burchette, R.A. Siddiqi, I.T. Huen, L.L. Hadnott and A. Fishman, Perit. Dial. Int., 23, 368 (2003); https://doi.org/10.1177/089686080302300410
A. Królikowska, A. Kudelski, A. Michota and J. Bukowska, Surf. Sci., 532–535, 227 (2003); https://doi.org/10.1016/S0039-6028(03)00094-3
N. Baig, I. Kammakakam and W. Falath, Mater. Adv., 2, 1821 (2021); https://doi.org/10.1039/D0MA00807A
V. Chandrakala, V. Aruna and G. Angajala, Emergent Mater., (2022); https://doi.org/10.1007/s42247-021-00335-x
H. Karami, M.A. Karimi, S. Haghdar, A. Sadeghi, R. Mir-Ghasemi and S. Mahdi-Khani, Mater. Chem. Phys., 108, 337 (2008); https://doi.org/10.1016/j.matchemphys.2007.09.045
A. Thulasiramudu and S. Buddhudu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 323 (2007); https://doi.org/10.1016/j.saa.2006.02.060
C. Barriga, S. Maffi, L. Peraldo Bicelli and C. Malitesta, J. Power Sources, 34, 353 (1991); https://doi.org/10.1016/0378-7753(91)80101-3
W.U. Huynh, J.J. Dittmer and A.P. Alivisatos, Science, 295, 2425 (2002); https://doi.org/10.1126/science.1069156
M.S. Sonmez and R.V. Kumar, Hydrometallurgy, 95, 53 (2009); https://doi.org/10.1016/j.hydromet.2008.04.012
J. Senvaitiene, J. Smirnova, A. Beganskiene and A. Kareiva, Acta Chim. Slov., 54, 185 (2007).
B. Jaffe, R.S. Roth and S. Marzullo, J. Res. Natl. Bur. Stand., 55, 239 (1955); https://doi.org/10.6028/jres.055.028
A. Miri, M. Sarani, A. Hashemzadeh, Z. Mardani and M. Darroudi, Green Chem. Lett. Rev., 11, 567 (2018); https://doi.org/10.1080/17518253.2018.1547926
G. El-Damrawi and E. Mansour, Physica B, 364, 190 (2005); https://doi.org/10.1016/j.physb.2005.04.012
E. Casals, S. Vazquez-Campos, N. Bastus and V. Puntes, Trac-Trends Anal. Chem., 27, 672 (2008); https://doi.org/10.1016/j.trac.2008.06.004
C. McGovern, Nanotechnol. Percept., 6, 155 (2010); https://doi.org/10.4024/N15GO10A.ntp.06.03
C. Stephenson and A. Hubler, Sci. Rep., 5, 15044 (2015); https://doi.org/10.1038/srep15044
D. Lyon and A. Hubler, IEEE Trans. Dielectr. Electr. Insul., 20, 1467 (2013); https://doi.org/10.1109/TDEI.2013.6571470
G. Valenti, E. Rampazzo, S. Bonacchi, L. Petrizza, M. Marcaccio, M. Montalti, L. Prodi and F. Paolucci, J. Am. Chem. Soc., 138, 15935 (2016); https://doi.org/10.1021/jacs.6b08239
P. Kerativitayanan, J.K. Carrow and A.K. Gaharwar, Adv. Healthcare Mater., 4, 1600 (2015); https://doi.org/10.1002/adhm.201500272
K.C. Chen, C.W. Wang, Y.I. Lee and H.G. Liu, Colloids Surf. A Physicochem. Eng. Asp., 373, 124 (2011); https://doi.org/10.1016/j.colsurfa.2010.10.035
S. Ghasemi, M.F. Mousavi, M. Shamsipur and H. Karami, Ultrason. Sonochem., 15, 448 (2008); https://doi.org/10.1016/j.ultsonch.2007.05.006
L. Shi, Y. Xu and Q. Li, Cryst. Growth Des., 8, 3521 (2008); https://doi.org/10.1021/cg700909v
M.M. Kashani-Motlagh and M.K. Mahmoudabad, J. Sol-Gel Sci. Technol., 59, 106 (2011); https://doi.org/10.1007/s10971-011-2467-y
J.C. Schottmiller, J. Appl. Phys., 37, 3505 (1966); https://doi.org/10.1063/1.1708890
M.S. Chavali and M.P. Nikolova, SN Appl. Sci., 1, 607 (2019); https://doi.org/10.1007/s42452-019-0592-3
P. Makula, M. Pacia and W. Macyk, J. Phys. Chem. Lett., 9, 6814 (2018); https://doi.org/10.1021/acs.jpclett.8b02892
V.N. Suryawanshi and M.D. Deshpande, AIP Conf. Proceed., 2335, 080012 (2021); https://doi.org/10.1063/5.0046133
K.T. Arulmozhi and N. Mythili, AIP Adv., 3, 122122 (2013); https://doi.org/10.1063/1.4858419