Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Antibacterial, Anticancer, Catalytic and Antioxidant Activities of Green Synthesized Silver Nanoparticles Derived from Alternanthera sessilis Leaf Extract
Corresponding Author(s) : B. Hari Babu
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
The current study evaluates the biogenesis of silver nanoparticles (Ag NPs) utilizing an aqueous extract of Alternanthera sessilis (Linn.) leaf. Biological nanoparticle production has recently gained appeal due to its eco-friendliness, simplicity, cost-effectiveness, non-hazardous nature and difficult circumstances. Aqueous extract of Alternanthera sessilis leaf contains terpenoids, carbohydrates and flavonoids to convert metal ions into metal and so stabilize the resultant nanoparticles. The UV-visible spectrophotometer obtained a distinctive peak at 420 nm, the XRD validated the crystalline FCC nature of biogenic Ag NPs and the FTIR and zeta-potential (± 14) tests revealed that phyto-chemicals were responsible for reduction and stabilization of Ag NPs. TEM examination revealed a spherical form and size of about 24 nm. The biogenic Ag NPs displayed intriguing dose-dependent antioxidant activity, with an EC50 percent of 69.9g/mL and a maximum activity of 66.36 at 150 μg/mL against DPPH, as well as considerable catalytic activity against Eosin-Y red dye, 84% of Eosin-Y dye destroyed after 60 min. Furthermore, the experiments demonstrated that Ag NPs were more effective against Gram-negative bacteria than Gram-positive bacteria and also show the anticancer activity against Hela cells and breast cancer cell line (MCF-7).The anticancer activity is more potent in higher concentrations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Patil and R. Chandrasekaran, J. Genet. Eng. Biotechnol., 18, 67 (2020); https://doi.org/10.1186/s43141-020-00081-3
- M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy and G.E.J. Poinern, Materials, 8, 7278 (2015); https://doi.org/10.3390/ma8115377
- S. Patil and R. Chandrasekaran, J. Genet. Eng. Biotechnol., 18, 67 (2020); https://doi.org/10.1186/s43141-020-00081-3
- A. Albanese, P.S. Tang and W.C.W. Chan, Ann. Rev. Biomed. Eng., 14, 1 (2012); https://doi.org/10.1146/annurev-bioeng-071811-150124
- A. Mishra, S. Singla and A.K. Barui, Biogenic Nanoparticles for Cancer Theranostics, In: Micro and Nano Technologies, Elsevier, pp. 123-140 (2021); https://doi.org/10.1016/B978-0-12-821467-1.00011-2
- R.M. Slawson, J.T. Trevors and H. Lee, Arch. Microbiol., 158, 398 (1992); https://doi.org/10.1007/BF00276299
- G. Zhao and S.E. Stevens Jr., Biometals, 11, 27 (1998); https://doi.org/10.1023/A:1009253223055
- M.A. Khalil, G.M. El Maghraby, F.I. Sonbol, N.G. Allam, P.S. Ateya and S.S. Ali, Front. Microbiol., 12, 648560 (2021); https://doi.org/10.3389/fmicb.2021.648560
- A. Almatroudi, Open Life Sci., 15, 819 (2020); https://doi.org/10.1515/biol-2020-0094
- A. Roy and N. Bharadvaja, Biomimetic Nanobiomater., 8, 130 (2019); https://doi.org/10.1680/jbibn.18.00036
- J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar and P. Kumar, J. Nanobiotechnol., 16, 84 (2018); https://doi.org/10.1186/s12951-018-0408-4
- M. Ndikau, N.M. Noah, D.M. Andala and E. Masika, Int. J. Anal. Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/8108504
- R.K. Singla, V. Dhir, R. Madaan, D. Kumar, S. Singh Bola, M. Bansal, S. Kumar, A.K. Dubey, S. Singla and B. Shen, Front. Pharmacol., 13, 769111 (2022); https://doi.org/10.3389/fphar.2022.769111
- L. Qian, W. Su, Y. Wang, M. Dang, W. Zhang and C. Wang, Artif. Cells Nanomed. Biotechnol., 47, 1173 (2019); https://doi.org/10.1080/21691401.2018.1549064
- C.E. Escárcega-González, J.A. Garza-Cervantes, A. VázquezRodríguez, L.Z. Montelongo-Peralta, M.T. Treviño-González, E. Díaz Barriga Castro, E.M. Saucedo-Salazar, R.M. Chávez Morales, D.I. Regalado-Soto, F.M. Treviño-González, J.L. Carrazco Rosales, R. Villalobos Cruz and J.R. Morones-Ramirez, Int. J. Nanomedicine, 13, 2349 (2018); https://doi.org/10.2147/IJN.S160605
- V.K. Vidhu and D. Philip, Micron, 56, 54 (2014); https://doi.org/10.1016/j.micron.2013.10.006
- L.L. Mensor, F.S. Menezes, G.G. Leitão, A.S. Reis, T.C. Santos, C.S. Coube and S.G. Leitão, Phytother. Res., 15, 127 (2001); https://doi.org/10.1002/ptr.687
- A.K. Keshari, R. Srivastava, P. Singh, V.B. Yadav and G. Nath, J. Ayurveda Integr. Med., 11, 37 (2020); https://doi.org/10.1016/j.jaim.2017.11.003
- M.S. Majoumouo, N.R.S. Sibuyi, M.B. Tincho, M. Mbekou, F.F. Boyom and M. Meyer, Int. J. Nanomedicine, 14, 9031 (2019); https://doi.org/10.2147/IJN.S223447
- Hemlata, P.R. Meena, A.P. Singh and K.K. Tejavath, ACS Omega, 5, 5520 (2020); https://doi.org/10.1021/acsomega.0c00155.
- N. Yang and W. Li, Ind. Crops Prod., 48, 81 (2013); https://doi.org/10.1016/j.indcrop.2013.04.001
- L.B. Anigol, J.S. Charantimath and P.M. Gurubasavaraj, Org. Med. Chem., 3, 1 (2017); https://doi.org/10.19080/OMCIJ.2017.03.555622
- M.S. Samuel, M. Ravikumar, A. John J., E. Selvarajan, H. Patel, P.S. Chander, J. Soundarya, S. Vuppala, R. Balaji and N. Chandrasekar, Catalysts, 12, 459 (2022); https://doi.org/10.3390/catal12050459
- S. Raj, R. Trivedi and V. Soni, Surfaces, 5, 67 (2021); https://doi.org/10.3390/surfaces5010003
- K. Gopinath, S. Gowri and A. Arumugam, J. Nanostructure Chem., 3, 68 (2013); https://doi.org/10.1186/2193-8865-3-68
- S.M. Rakib-Uz-Zaman, E.H. Apu, M.N. Muntasir, S.A. Mowna, M.G. Khanom, S.S. Jahan, N. Akter, M.A.R. Khan, N.S. Shuborna, S.M. Shams and K. Khan, Challenges, 13, 18 (2022); https://doi.org/10.3390/challe13010018
- J.K. Patra and K. Baek, J. Nanomater. Synth., 2014, 417305 (2014); https://doi.org/10.1155/2014/417305
- R. Mata, J.R. Nakkala and S.R. Sadras, Colloids Surf. B Biointerfaces, 128, 276 (2015); https://doi.org/10.1016/j.colsurfb.2015.01.052
- E. Urnukhsaikhan, B.E. Bold, A. Gunbileg, N. Sukhbaatar and T. Mishig-Ochir, Sci. Rep., 11, 21047 (2021); https://doi.org/10.1038/s41598-021-00520-2
- L. Budama, B.A. Çakir, Ö. Topel and N. Hoda, Chem. Eng. J., 228, 489 (2013); https://doi.org/10.1016/j.cej.2013.05.018
- K. Anandalakshmi, J. Venugobal and V. Ramasamy, Appl. Nanosci., 6, 399 (2016); https://doi.org/10.1007/s13204-015-0449-z
- H. Padalia, P. Moteriya and S. Chanda, Arab. J. Chem., 8, 732 (2015); https://doi.org/10.1016/j.arabjc.2014.11.015
- T.A. Jorge de Souza, L.R. Rosa Souza and L.P. Franchi, Ecotoxicol. Environ. Saf., 171, 691 (2019); https://doi.org/10.1016/j.ecoenv.2018.12.095
- Y. Sun, B. Gates, B. Mayers and Y. Xia, Nano Lett., 2, 165 (2002); https://doi.org/10.1021/nl010093y
- K. Mohan Kumar, M. Sinha, B.K. Mandal, A.R. Ghosh, K. Siva Kumar and P. Sreedhara Reddy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 91, 228 (2012); https://doi.org/10.1016/j.saa.2012.02.001
- M.J. Khan, K. Shameli, A.Q. Sazili, J. Selamat and S. Kumari, Molecules, 24, 719 (2019); https://doi.org/10.3390/molecules24040719
- R. Karthik, M. Govindasamy, S.M. Chen, P. Muthukrishnan, Y.H. Cheng, S. Padmavathy and A. Elangovan, J. Photochem. Photobiol. B, 170, 164 (2017); https://doi.org/10.1016/j.jphotobiol.2017.03.018
- S. Rajeshkumar, S. Menon, S. Venkat Kumar, M.M. Tambuwala, H.A. Bakshi, M. Mehta, S. Satija, G. Gupta, D.K. Chellappan, L. Thangavelu and K. Dua, J. Photochem. Photobiol. B, 197, 111531 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111531
References
S. Patil and R. Chandrasekaran, J. Genet. Eng. Biotechnol., 18, 67 (2020); https://doi.org/10.1186/s43141-020-00081-3
M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy and G.E.J. Poinern, Materials, 8, 7278 (2015); https://doi.org/10.3390/ma8115377
S. Patil and R. Chandrasekaran, J. Genet. Eng. Biotechnol., 18, 67 (2020); https://doi.org/10.1186/s43141-020-00081-3
A. Albanese, P.S. Tang and W.C.W. Chan, Ann. Rev. Biomed. Eng., 14, 1 (2012); https://doi.org/10.1146/annurev-bioeng-071811-150124
A. Mishra, S. Singla and A.K. Barui, Biogenic Nanoparticles for Cancer Theranostics, In: Micro and Nano Technologies, Elsevier, pp. 123-140 (2021); https://doi.org/10.1016/B978-0-12-821467-1.00011-2
R.M. Slawson, J.T. Trevors and H. Lee, Arch. Microbiol., 158, 398 (1992); https://doi.org/10.1007/BF00276299
G. Zhao and S.E. Stevens Jr., Biometals, 11, 27 (1998); https://doi.org/10.1023/A:1009253223055
M.A. Khalil, G.M. El Maghraby, F.I. Sonbol, N.G. Allam, P.S. Ateya and S.S. Ali, Front. Microbiol., 12, 648560 (2021); https://doi.org/10.3389/fmicb.2021.648560
A. Almatroudi, Open Life Sci., 15, 819 (2020); https://doi.org/10.1515/biol-2020-0094
A. Roy and N. Bharadvaja, Biomimetic Nanobiomater., 8, 130 (2019); https://doi.org/10.1680/jbibn.18.00036
J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar and P. Kumar, J. Nanobiotechnol., 16, 84 (2018); https://doi.org/10.1186/s12951-018-0408-4
M. Ndikau, N.M. Noah, D.M. Andala and E. Masika, Int. J. Anal. Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/8108504
R.K. Singla, V. Dhir, R. Madaan, D. Kumar, S. Singh Bola, M. Bansal, S. Kumar, A.K. Dubey, S. Singla and B. Shen, Front. Pharmacol., 13, 769111 (2022); https://doi.org/10.3389/fphar.2022.769111
L. Qian, W. Su, Y. Wang, M. Dang, W. Zhang and C. Wang, Artif. Cells Nanomed. Biotechnol., 47, 1173 (2019); https://doi.org/10.1080/21691401.2018.1549064
C.E. Escárcega-González, J.A. Garza-Cervantes, A. VázquezRodríguez, L.Z. Montelongo-Peralta, M.T. Treviño-González, E. Díaz Barriga Castro, E.M. Saucedo-Salazar, R.M. Chávez Morales, D.I. Regalado-Soto, F.M. Treviño-González, J.L. Carrazco Rosales, R. Villalobos Cruz and J.R. Morones-Ramirez, Int. J. Nanomedicine, 13, 2349 (2018); https://doi.org/10.2147/IJN.S160605
V.K. Vidhu and D. Philip, Micron, 56, 54 (2014); https://doi.org/10.1016/j.micron.2013.10.006
L.L. Mensor, F.S. Menezes, G.G. Leitão, A.S. Reis, T.C. Santos, C.S. Coube and S.G. Leitão, Phytother. Res., 15, 127 (2001); https://doi.org/10.1002/ptr.687
A.K. Keshari, R. Srivastava, P. Singh, V.B. Yadav and G. Nath, J. Ayurveda Integr. Med., 11, 37 (2020); https://doi.org/10.1016/j.jaim.2017.11.003
M.S. Majoumouo, N.R.S. Sibuyi, M.B. Tincho, M. Mbekou, F.F. Boyom and M. Meyer, Int. J. Nanomedicine, 14, 9031 (2019); https://doi.org/10.2147/IJN.S223447
Hemlata, P.R. Meena, A.P. Singh and K.K. Tejavath, ACS Omega, 5, 5520 (2020); https://doi.org/10.1021/acsomega.0c00155.
N. Yang and W. Li, Ind. Crops Prod., 48, 81 (2013); https://doi.org/10.1016/j.indcrop.2013.04.001
L.B. Anigol, J.S. Charantimath and P.M. Gurubasavaraj, Org. Med. Chem., 3, 1 (2017); https://doi.org/10.19080/OMCIJ.2017.03.555622
M.S. Samuel, M. Ravikumar, A. John J., E. Selvarajan, H. Patel, P.S. Chander, J. Soundarya, S. Vuppala, R. Balaji and N. Chandrasekar, Catalysts, 12, 459 (2022); https://doi.org/10.3390/catal12050459
S. Raj, R. Trivedi and V. Soni, Surfaces, 5, 67 (2021); https://doi.org/10.3390/surfaces5010003
K. Gopinath, S. Gowri and A. Arumugam, J. Nanostructure Chem., 3, 68 (2013); https://doi.org/10.1186/2193-8865-3-68
S.M. Rakib-Uz-Zaman, E.H. Apu, M.N. Muntasir, S.A. Mowna, M.G. Khanom, S.S. Jahan, N. Akter, M.A.R. Khan, N.S. Shuborna, S.M. Shams and K. Khan, Challenges, 13, 18 (2022); https://doi.org/10.3390/challe13010018
J.K. Patra and K. Baek, J. Nanomater. Synth., 2014, 417305 (2014); https://doi.org/10.1155/2014/417305
R. Mata, J.R. Nakkala and S.R. Sadras, Colloids Surf. B Biointerfaces, 128, 276 (2015); https://doi.org/10.1016/j.colsurfb.2015.01.052
E. Urnukhsaikhan, B.E. Bold, A. Gunbileg, N. Sukhbaatar and T. Mishig-Ochir, Sci. Rep., 11, 21047 (2021); https://doi.org/10.1038/s41598-021-00520-2
L. Budama, B.A. Çakir, Ö. Topel and N. Hoda, Chem. Eng. J., 228, 489 (2013); https://doi.org/10.1016/j.cej.2013.05.018
K. Anandalakshmi, J. Venugobal and V. Ramasamy, Appl. Nanosci., 6, 399 (2016); https://doi.org/10.1007/s13204-015-0449-z
H. Padalia, P. Moteriya and S. Chanda, Arab. J. Chem., 8, 732 (2015); https://doi.org/10.1016/j.arabjc.2014.11.015
T.A. Jorge de Souza, L.R. Rosa Souza and L.P. Franchi, Ecotoxicol. Environ. Saf., 171, 691 (2019); https://doi.org/10.1016/j.ecoenv.2018.12.095
Y. Sun, B. Gates, B. Mayers and Y. Xia, Nano Lett., 2, 165 (2002); https://doi.org/10.1021/nl010093y
K. Mohan Kumar, M. Sinha, B.K. Mandal, A.R. Ghosh, K. Siva Kumar and P. Sreedhara Reddy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 91, 228 (2012); https://doi.org/10.1016/j.saa.2012.02.001
M.J. Khan, K. Shameli, A.Q. Sazili, J. Selamat and S. Kumari, Molecules, 24, 719 (2019); https://doi.org/10.3390/molecules24040719
R. Karthik, M. Govindasamy, S.M. Chen, P. Muthukrishnan, Y.H. Cheng, S. Padmavathy and A. Elangovan, J. Photochem. Photobiol. B, 170, 164 (2017); https://doi.org/10.1016/j.jphotobiol.2017.03.018
S. Rajeshkumar, S. Menon, S. Venkat Kumar, M.M. Tambuwala, H.A. Bakshi, M. Mehta, S. Satija, G. Gupta, D.K. Chellappan, L. Thangavelu and K. Dua, J. Photochem. Photobiol. B, 197, 111531 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111531