Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Platinum Group Metals Bonded Thiolato Sulfur Oxygenation: Photoactivity and Bioactivity: A Review
Corresponding Author(s) : Ujjwal Das
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
Platinum group metals mediated thiolato compounds are highly susceptible for S-centered reactivity owing to high nucleophilicity and which is enormously significant in the point of its bioactivity and photoactivity. A series of oxygenation reactions of thiolate sulfur attached with platinum metals occurred with molecular O2 in varying conditions. A variety of sulfenates and sulfinates are produced depending on nature of starting substrate thiolato and the oxygenations are facile under harshly oxygen environment. There are numerous mechanistic paths for the oxygenation of platinum metals bonded thiolate S-center unlike the oxygenation reaction of organic sulphides. It is assumed that S-oxygenation occurs via the intramolecular and intermolecular dioxygen addition pathways. A number of mysterious photo-induced sulphur oxygenation and self-sensitization reactions of metal-thiolato to analogous oxygenate are also mentioned. These compounds show enzymatic catalytic activity and remarkable bioactivity also interaction with the biomolecules like DNA, which opens a new area for the researchers for designing novel heavier metals-sulfur-oxygenates compounds as metallodrugs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Jensen, A. Greer and E.L. Clennan, J. Am. Chem. Soc., 120, 4439 (1998); https://doi.org/10.1021/ja973782d
- K. Gollnick and G.O. Schenck, Pure Appl. Chem., 9, 507 (1964); https://doi.org/10.1351/pac196409040507
- N. Shefer and S. Rozen, J. Org. Chem., 75, 4623 (2010); https://doi.org/10.1021/jo100702f
- N. Yoshinari and T. Konno, Chemistry, 15, 10021 (2009); https://doi.org/10.1002/chem.200901903
- K.N. Green, S.M. Brothers, R.M. Jenkins, C.A. Grapperhaus, C.E. Carson and M.Y. Darensbourg, Inorg. Chem., 46, 7536 (2007); https://doi.org/10.1021/ic700878y
- G.A. Kinunda, Tanzan. J. Sci., 44, 45 (2018).
- H. Tang, E.N. Brothers, C.A. Grapperhaus and M.B. Hall, ACS Catal., 10, 3778 (2020); https://doi.org/10.1021/acscatal.9b04579
- R.M. LoPachin and T. Gavin, Free Radic. Res., 50, 195 (2016); https://doi.org/10.3109/10715762.2015.1094184
- M. Gennari and C. Duboc, Acc. Chem. Res., 53, 2753 (2020); https://doi.org/10.1021/acs.accounts.0c00555
- Q. Yao, Z. Wu, Z. Liu, Y. Lin, X. Yuan and J. Xie, Chem. Sci., 12, 99 (2021); https://doi.org/10.1039/D0SC04620E
- T. Liu, B. Li, M.L. Singleton, M.B. Hall and M.Y. Darensbourg, J. Am. Chem. Soc., 131, 8296 (2009); https://doi.org/10.1021/ja9016528
- J.A. Kovacs, Chem. Rev., 104, 825 (2004); https://doi.org/10.1021/cr020619e
- C.S. Mullins, C.A. Grapperhaus, B.C. Frye, L.H. Wood, A.J. Hay, R.M. Buchanan and M.S. Mashuta, Inorg. Chem., 48, 9974 (2009); https://doi.org/10.1021/ic901246w
- C.A. Masitas, M.S. Mashuta and C.A. Grapperhaus, Inorg. Chem., 49, 5344 (2010); https://doi.org/10.1021/ic100414c
- C.-M. Lee, C.-H. Hsieh, A. Dutta, G.-H. Lee and W.-F. Liaw, J. Am. Chem. Soc., 125, 11492 (2003); https://doi.org/10.1021/ja035292t
- C.A. Grapperhaus, C.S. Mullins, P.M. Kozlowski and M.S. Mashuta, Inorg. Chem., 43, 2859 (2004); https://doi.org/10.1021/ic035205y
- J.N. Cobley and H. Husi, Antioxidants, 9, 315 (2020); https://doi.org/10.3390/antiox9040315
- T. Arakawa, Y. Kawano, S. Kataoka, Y. Katayama, N. Kamiya, M. Yohda and M. Odaka, J. Mol. Biol., 366, 1497 (2007); https://doi.org/10.1016/j.jmb.2006.12.011
- A.A. Abou-Hussein and W. Linert, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 763 (2014); https://doi.org/10.1016/j.saa.2013.06.078
- F. Paison, B. Su, D. Pan, T. Yan and J. Wu, Austin Biochem., 5, 1025 (2020).
- M. Selvaganapathy and N. Raman, J. Chem. Biol. Ther., 2, 108 (2016); https://doi.org/10.4172/2572-0406.1000108
- Y. Jiang, L.R. Widger, G.D. Kasper, M.A. Siegler and D.P. Goldberg, J. Am. Chem. Soc., 132, 12214 (2010); https://doi.org/10.1021/ja105591q
- A. Dey, S.P. Jeffrey, M.Y. Darensbourg, K.O. Hodgson, B. Hedman and E.I. Solomon, Inorg. Chem., 46, 4989 (2007); https://doi.org/10.1021/ic070244l
- D. Kumar, T.N. Nguyen and C.A. Grapperhaus, Inorg. Chem., 53, 12372 (2014); https://doi.org/10.1021/ic501695n
- C.A. Masitas, M. Kumar, M.S. Mashuta, P.M. Kozlowski and C.A. Grapperhaus, Inorg. Chem., 49, 10875 (2010); https://doi.org/10.1021/ic101221z
- W.B. Tolman, J. Biol. Inorg. Chem., 11, 261 (2006); https://doi.org/10.1007/s00775-006-0078-9
- S.A. Mirza, R.O. Day and M.J. Maroney, Inorg. Chem., 35, 1992 (1996); https://doi.org/10.1021/ic950736a
- W. Shin and P.A. Lindahl, Biochim. Biophys. Acta, 1161, 317 (1993); https://doi.org/10.1016/0167-4838(93)90231-F
- J.M.C.C. Coremans, J.W. Van der Zwaan and S.P. Albracht, J. Biochim. Biophys. Acta, 1119, 157 (1992); https://doi.org/10.1016/0167-4838(92)90386-R
- R.L. Charles, E. Schroder, G. May, P. Free, P.R.J. Gaffney, R. Wait, S. Begum, R.J. Heads and P. Eaton, Mol. Cell. Proteomics, 6, 1473 (2007); https://doi.org/10.1074/mcp.M700065-MCP200
- C. Jacob, I. Knight and P.G. Winyard, Biol. Chem., 387, 1385 (2006); https://doi.org/10.1515/BC.2006.174
- A.C. McQuilken and D.P. Goldberg, Dalton Trans., 41, 10883 (2012); https://doi.org/10.1039/c2dt30806a
- D. Kumar, Ph.D. Thesis, Sulfur-Oxidation Enhances Nitrile Hydration in Bioinspired Ruthenium Complexes: Catalytic, Kinetic and DFT Investigations, University of Louisville, Louisville, Kentucky, USA (2015).
- J. Amaro-Gahete, M.V. Pavliuk, H. Tian, D. Esquivel, F.J. RomeroSalguero and S. Ott, Coord. Chem. Rev., 448, 214172 (2021); https://doi.org/10.1016/j.ccr.2021.214172
- D. Tietze, J. Sartorius, B. Koley Seth, K. Herr, P. Heimer, D. Imhof, D. Mollenhauer and G. Buntkowsky, Sci. Rep., 7, 17194 (2017); https://doi.org/10.1038/s41598-017-17446-3
- T. Sriskandakumar, H. Petzold, P.C.A. Bruijnincx, A. Habtemariam, P.J. Sadler and P. Kennepohl, J. Am. Chem. Soc., 131, 13355 (2009); https://doi.org/10.1021/ja903405z
- Y. You and W. Nam, Chem. Soc. Rev., 41, 7061 (2012); https://doi.org/10.1039/c2cs35171d
- H.-F. Chen, C. Wu, M.-C. Kuo, M.E. Thompson and K.-T. Wong, J. Mater. Chem., 22, 9556 (2012); https://doi.org/10.1039/c2jm30443k
- S. Sato, T. Morikawa, T. Kajino and O. Ishitani, Angew. Chem. Int. Ed., 52, 988 (2013); https://doi.org/10.1002/anie.201206137
- D.R. Whang, K. Sakai and S.Y. Park, Angew. Chem. Int. Ed., 52, 11612 (2013); https://doi.org/10.1002/anie.201305684
- T.B. Fleetham, Z. Wang and J. Li, Inorg. Chem., 52, 7338 (2013); https://doi.org/10.1021/ic3023453
- E. Baranoff, J.-H. Yum, I. Jung, R. Vulcano, M. Grätzel and M.K. Nazeeruddin, Chem. Asian J., 5, 496 (2010); https://doi.org/10.1002/asia.200900429
- S. Moromizato, Y. Hisamatsu, T. Suzuki, Y. Matsuo, R. Abe and S. Aoki, Inorg. Chem., 51, 12697 (2012); https://doi.org/10.1021/ic301310q
- A.O. Adeloye and P.A. Ajibade, Molecules, 19, 12421 (2014); https://doi.org/10.3390/molecules190812421
- G. Li, D. Zhu, X. Wang, Z. Su and M.R. Bryce, Chem. Soc. Rev., 49, 765 (2020); https://doi.org/10.1039/C8CS00660A
- V.W.-W. Yam and K.M.-C. Wong, Chem. Commun., 47, 11579 (2011); https://doi.org/10.1039/c1cc13767k
- D. Ashen-Garry and M. Selke, Photochem. Photobiol., 90, 257 (2014); https://doi.org/10.1111/php.12211
- E.L. Clennan and A. Pace, Tetrahedron, 61, 6665 (2005); https://doi.org/10.1016/j.tet.2005.04.017
- D.M. Wagnerová and K. Lang, Coord. Chem. Rev., 255, 2904 (2011); https://doi.org/10.1016/j.ccr.2011.06.017
- D. Kessel and T.H. Foster, Photochem. Photobiol., 83, 995 (2007); https://doi.org/10.1111/j.1751-1097.2007.00201.x
- D.J. Lambeth, Nat. Rev. Immunol., 4, 181 (2004); https://doi.org/10.1038/nri1312
- S.D. Cummings and R. Eisenberg, J. Am. Chem. Soc., 118, 1949 (1996); https://doi.org/10.1021/ja951345y
- D. Zhang, Y. Bin, L. Tallorin, F. Tse, B. Hernandez, E.V. Mathias, T. Stewart, R. Bau and M. Selke, Inorg. Chem., 52, 1676 (2013); https://doi.org/10.1021/ic3020578
- C.A. Grapperhaus, S. Poturovic and M.S. Mashuta, Inorg. Chem., 44, 8185 (2005); https://doi.org/10.1021/ic051211d
- C.G. Monsour, C.M. Decosto, B.J. Tafolla-Aguirre, L.A. Morales and M. Selke, Photochem. Photobiol., 97, 1219 (2021); https://doi.org/10.1111/php.13487
- J.-P.R. Chauvin and D.A. Pratt, Angew. Chem. Int. Ed., 56, 6255 (2017); https://doi.org/10.1002/anie.201610402
- L.A.H. van Bergen, G. Roos and F. De Proft, J. Phys. Chem. A, 118, 6078 (2014); https://doi.org/10.1021/jp5018339
- R. Kassim, C. Ramseyer and M. Enescu, Inorg. Chem., 50, 5407 (2011); https://doi.org/10.1021/ic200267x
- X. Song, M.G. Fanelli, J.M. Cook, F. Bai and C.A. Parish, J. Phys. Chem. A, 116, 4934 (2012); https://doi.org/10.1021/jp301919g
- R. Acharyya, S. Dutta, F. Basuli, S.-M. Peng, G.-H. Lee, L.R. Falvello and S. Bhattacharya, Inorg. Chem., 45, 1252 (2006); https://doi.org/10.1021/ic050505w
- B. Mala, L.E. Murtagh, C.M.A. Farrow, G.R. Akien, N.R. Halcovich, S.L. Allinson, J.A. Platts and M.P. Coogan, Inorg. Chem., 60, 7031 (2021); https://doi.org/10.1021/acs.inorgchem.0c03553
- P. Römbke, A. Schier and H. Schmidbaur, Dalton Trans., 2482 (2001); https://doi.org/10.1039/b104001b
- M. Tamura, K. Tsuge, A. Igashira-Kamiyama and T. Konno, Chem. Commun., 47, 12464 (2011); https://doi.org/10.1039/c1cc14342e
- U. Das, T. Ghorui, B. Adhikari, S. Roy, S. Pramanik and K. Pramanik, Dalton Trans., 44, 8625 (2015); https://doi.org/10.1039/C5DT00448A
- A. Moneo-Corcuera, B. Pato-Doldan, I. Sánchez-Molina, D. NietoCastro and J.R. Galán-Mascarós, Molecules, 26, 6020 (2021); https://doi.org/10.3390/molecules26196020
- M. Kumar, G.J. Colpas, R.O. Day and M.J. Maroney, J. Am. Chem. Soc., 111, 8323 (1989); https://doi.org/10.1021/ja00203a068
- D.L. Herting, C.P. Sloan, A.W. Cabral and J.H. Krueger, Inorg. Chem., 17, 1649 (1978); https://doi.org/10.1021/ic50184a053
- D. Kumar, C.A. Masitas, T.N. Nguyen and C.A. Grapperhaus, Chem. Commun., 49, 294 (2013); https://doi.org/10.1039/C2CC35256G
- C.A. Grapperhaus, M.J. Maguire, T. Tuntulani and M.Y. Darensbourg, Inorg. Chem., 36, 1860 (1997); https://doi.org/10.1021/ic970050d
- P.J. Farmer, T. Solouki, T. Soma, D.H. Russell and M.Y. Darensbourg, Inorg. Chem., 32, 4171 (1993); https://doi.org/10.1021/ic00072a002
- D. Zhang, B. Hernandez and M. Selke, J. Sulphur Chem., 29, 377 (2008); https://doi.org/10.1080/17415990802146980
- T. Tuntulani, G. Musie, J.H. Reibenspies and M.Y. Darensbourg, Inorg. Chem., 34, 6279 (1995); https://doi.org/10.1021/ic00129a012
- M.Y. Darensbourg, P.J. Farmer, T. Soma, D.H. Russell, T. Solouki and J.H. Reibenspies, Eds.: D.H.R. Barton, A.E. Martell and D.T. Sawyer, The Activation of Dioxygen and Homogeneous Catalytic Oxidation; Plenum Press: New York, p. 209 (1993).
- F. Jensen, J. Org. Chem., 57, 6478 (1992); https://doi.org/10.1021/jo00050a022
- M. Selke, W.L. Karney, S.I. Khan and C.S. Foote, Inorg. Chem., 34, 5715 (1995); https://doi.org/10.1021/ic00127a007
- P. Pyykko, Chem. Rev., 88, 563 (1988); https://doi.org/10.1021/cr00085a006
- C.A. Grapperhaus, M.Y. Darensbourg, L.W. Sumner and D.H. Russell, J. Am. Chem. Soc., 118, 1791 (1996); https://doi.org/10.1021/ja953489i
- C.A. Grapperhaus and M.Y. Darensbourg, Acc. Chem. Res., 31, 451 (1998); https://doi.org/10.1021/ar950048v
- M. Tamura, K. Tsuge, A. Igashira-Kamiyama and T. Konno, Inorg. Chem., 50, 4764 (2011); https://doi.org/10.1021/ic102319p
- R.A. Begum, A.A. Farah, H.N. Hunter and A.B.P. Lever, Inorg. Chem., 48, 2018 (2009); https://doi.org/10.1021/ic801898t
- W.B. Connick and H.B. Gray, J. Am. Chem. Soc., 119, 11620 (1997); https://doi.org/10.1021/ja9723803
- C.S. Keating, B.A. McClure, J.J. Rack and I.V. Rubtsov, J. Chem. Phys., 133, 144513 (2010); https://doi.org/10.1063/1.3482708
- M. Lauter, D.K. Breitinger, R. Breiter, J. Mink and E. Bencze, J. Mol. Struct., 563-564, 383 (2001); https://doi.org/10.1016/S0022-2860(00)00795-X
- M.G. O’Toole, M. Kreso, P.M. Kozlowski, M.S. Mashuta and C.A. Grapperhaus, J. Biol. Inorg. Chem., 13, 1219 (2008); https://doi.org/10.1007/s00775-008-0405-4
- S.M. Bonesi, M. Fagnoni and A. Albini, J. Org. Chem., 69, 928 (2004); https://doi.org/10.1021/jo035679e
- M. Ciclosi, C. Dinoi, L. Gonsalvi, M. Peruzzini, E. Manoury and R. Poli, Organometallics, 27, 2281 (2008); https://doi.org/10.1021/om800035f
- S.M. Bonesi, S. Crespi, D. Merli, I. Manet and A. Albini, J. Org. Chem., 82, 9054 (2017); https://doi.org/10.1021/acs.joc.7b01518
- M.R.E. da Silva, T. Auvray, B. Laramée-Milette, M.P. Franco, A.A.C. Braga, H.E. Toma and G.S. Hanan, Inorg. Chem., 57, 4898 (2018); https://doi.org/10.1021/acs.inorgchem.7b02965
- M. Selke, Reactions of Metal Complexes with Singlet Oxygen, In: PATAI’S Chemistry of Functional Groups, John Wiley & Sons Ltd.: Chichester, U.K., pp 1-50 (2016).
- M. Bregnhøj, M. Westberg, F. Jensen and P.R. Ogilby, Phys. Chem. Chem. Phys., 18, 22946 (2016); https://doi.org/10.1039/C6CP01635A
- S.D. Cummings and R. Eisenberg, Eds.: K.D. Karlin and E.I. Stiefel, Luminescence and Photochemistry of Metal Dithiolene Complexes, In: Dithiolene Chemistry: Synthesis, Properties and Applications, Wiley, Chap. 6, p. 315 (2003).
- V.H. Nguyen, H.Q. Chew, B. Su and J.H.K. Yip, Inorg. Chem., 53, 9739 (2014); https://doi.org/10.1021/ic501278n
- C.E. Paulsen and K.S. Carroll, Chem. Rev., 113, 4633 (2013); https://doi.org/10.1021/cr300163e
- J. Yasuda, K. Inoue, K. Mizuno, S. Arai, K. Uehara, A. Kikuchi, Y.-N. Yan, K. Yamanishi, Y. Kataoka, M. Kato, A. Kawai and T. Kawamoto, Inorg. Chem., 58, 15720 (2019); https://doi.org/10.1021/acs.inorgchem.9b01492
- P. Lugo-Mas, A. Dey, L. Xu, S.D. Davin, J. Benedict, W. Kaminsky, K.O. Hodgson, B. Hedman, E.I. Solomon and J.A. Kovacs, J. Am. Chem. Soc., 128, 11211 (2006); https://doi.org/10.1021/ja062706k
- R.M. Buonomo, I. Font, M.J. Maguire, J.H. Reibenspies, T. Tuntulani and M.Y. Darensbourg, J. Am. Chem. Soc., 117, 963 (1995); https://doi.org/10.1021/ja00108a013
- G.N. Schrauzer, C. Zhang and R. Chadha, Inorg. Chem., 29, 4104 (1990); https://doi.org/10.1021/ic00345a039
- G. Von Poelhsitz, B.L. Rodrigues and A.A. Batista, Acta Crystallogr. C, C62, m424 (2006); https://doi.org/10.1107/S0108270106027491
- T. Yano, Y. Wasada-Tsutsui, Y. Kajita, T. Shibayama, Y. Funahasi, T. Ozawa and H. Masuda, Chem. Lett., 37, 66 (2008); https://doi.org/10.1246/cl.2008.66
- L. Heinrich, Y. Li, J. Vaissermann and J.-C. Chottard, Eur. J. Inorg. Chem., 2001, 1407 (2001); https://doi.org/10.1002/1099-0682(200106)2001:6<1407::AIDEJIC1407>3.0.CO;2-P
- H. Petzold and P.J. Sadler, Chem. Commun., 37, 4413 (2008); https://doi.org/10.1039/b805358h
- H. Petzold, J. Xu and P.J. Sadler, Angew. Chem. Int. Ed., 47, 3008 (2008); https://doi.org/10.1002/anie.200705342
- F.Y. Wang, S. Weidt, J.J. Xu, C.L. Mackay, P.R.R. Langridge-Smith and P.J. Sadler, J. Am. Soc. Mass Spectrom., 19, 544 (2008); https://doi.org/10.1016/j.jasms.2007.12.002
- A.T. Odularu, P.A. Ajibade, J.Z. Mbese and O.O. Oyedeji, J. Chem., 2019, 5459461 (2019); https://doi.org/10.1155/2019/5459461
- K. Goto, M. Holler and R. Okazaki, J. Am. Chem. Soc., 119, 1460 (1997); https://doi.org/10.1021/ja962994s
- I. Ascone, L. Messori, A. Casini, C. Gabbiani, A. Balerna, F. Dell’Unto and A.C. Castellano, Inorg. Chem., 47, 8629 (2008); https://doi.org/10.1021/ic8001477
- T.V. Harris, R.K. Szilagyi and K.L. McFarlane Holman, J. Biol. Inorg. Chem., 14, 891 (2009); https://doi.org/10.1007/s00775-009-0501-0
- N. Cutillas, G. S. Yellol, C. de Haro, C. Vicente, V. Rodríguez and J. Ruiz, Coord. Chem. Rev., 257, 2784 (2013); https://doi.org/10.1016/j.ccr.2013.03.024
- K.D. Mjos and C. Orvig, Chem. Rev., 114, 4540 (2014); https://doi.org/10.1021/cr400460s
- M. Mbaba, T.M. Golding and G.S. Smith, Molecules, 25, 5276 (2020); https://doi.org/10.3390/molecules25225276
- J.M. Gichumbi and H.B. Friedrich, J. Organomet. Chem., 866, 123 (2018); https://doi.org/10.1016/j.jorganchem.2018.04.02
- G.H. Ribeiro, A.P.M. Guedes, T.D. de Oliveira, C.R.S.T. de Correia, L. Colina-Vegas, M.A. Lima, J.A. Nóbrega, M.R. Cominetti, F.V. Rocha, A.G. Ferreira, E.E. Castellano, F.R. Teixeira and A.A. Batista, Inorg. Chem., 59, 15004 (2020); https://doi.org/10.1021/acs.inorgchem.0c01835
- L. Xu, N.-J. Zhong, Y.-Y. Xie, H.-L. Huang, G.-B. Jiang and Y.-J. Liu, PLoS One, 9, e96082 (2014); https://doi.org/10.1371/journal.pone.0096082
- Y.S. Tan, C.I. Yeo, E.R.T. Tiekink and P.J. Heard, Inorganics, 9, 60 (2021); https://doi.org/10.3390/inorganics9080060
- A. Levina, A. Mitra and P.A. Lay, Metallomics, 1, 458 (2009); https://doi.org/10.1039/b904071d
- L. Shadap, V. Banothu, E. Pinder, R.M. Phillips, W. Kaminsky and M.R. Kollipara, J. Coord. Chem., 73, 1538 (2020); https://doi.org/10.1080/00958972.2020.1777547
- A.A. Adeniyi and P.A. Ajibade, Rev. Inorg. Chem., 36, 53 (2016); https://doi.org/10.1515/revic-2015-0008
- R. Kanaoujiya, M. Singh, J. Singh and S. Srivastava, J. Scientific Res., 64, 264 (2020); https://doi.org/10.37398/JSR.2020.640150
References
F. Jensen, A. Greer and E.L. Clennan, J. Am. Chem. Soc., 120, 4439 (1998); https://doi.org/10.1021/ja973782d
K. Gollnick and G.O. Schenck, Pure Appl. Chem., 9, 507 (1964); https://doi.org/10.1351/pac196409040507
N. Shefer and S. Rozen, J. Org. Chem., 75, 4623 (2010); https://doi.org/10.1021/jo100702f
N. Yoshinari and T. Konno, Chemistry, 15, 10021 (2009); https://doi.org/10.1002/chem.200901903
K.N. Green, S.M. Brothers, R.M. Jenkins, C.A. Grapperhaus, C.E. Carson and M.Y. Darensbourg, Inorg. Chem., 46, 7536 (2007); https://doi.org/10.1021/ic700878y
G.A. Kinunda, Tanzan. J. Sci., 44, 45 (2018).
H. Tang, E.N. Brothers, C.A. Grapperhaus and M.B. Hall, ACS Catal., 10, 3778 (2020); https://doi.org/10.1021/acscatal.9b04579
R.M. LoPachin and T. Gavin, Free Radic. Res., 50, 195 (2016); https://doi.org/10.3109/10715762.2015.1094184
M. Gennari and C. Duboc, Acc. Chem. Res., 53, 2753 (2020); https://doi.org/10.1021/acs.accounts.0c00555
Q. Yao, Z. Wu, Z. Liu, Y. Lin, X. Yuan and J. Xie, Chem. Sci., 12, 99 (2021); https://doi.org/10.1039/D0SC04620E
T. Liu, B. Li, M.L. Singleton, M.B. Hall and M.Y. Darensbourg, J. Am. Chem. Soc., 131, 8296 (2009); https://doi.org/10.1021/ja9016528
J.A. Kovacs, Chem. Rev., 104, 825 (2004); https://doi.org/10.1021/cr020619e
C.S. Mullins, C.A. Grapperhaus, B.C. Frye, L.H. Wood, A.J. Hay, R.M. Buchanan and M.S. Mashuta, Inorg. Chem., 48, 9974 (2009); https://doi.org/10.1021/ic901246w
C.A. Masitas, M.S. Mashuta and C.A. Grapperhaus, Inorg. Chem., 49, 5344 (2010); https://doi.org/10.1021/ic100414c
C.-M. Lee, C.-H. Hsieh, A. Dutta, G.-H. Lee and W.-F. Liaw, J. Am. Chem. Soc., 125, 11492 (2003); https://doi.org/10.1021/ja035292t
C.A. Grapperhaus, C.S. Mullins, P.M. Kozlowski and M.S. Mashuta, Inorg. Chem., 43, 2859 (2004); https://doi.org/10.1021/ic035205y
J.N. Cobley and H. Husi, Antioxidants, 9, 315 (2020); https://doi.org/10.3390/antiox9040315
T. Arakawa, Y. Kawano, S. Kataoka, Y. Katayama, N. Kamiya, M. Yohda and M. Odaka, J. Mol. Biol., 366, 1497 (2007); https://doi.org/10.1016/j.jmb.2006.12.011
A.A. Abou-Hussein and W. Linert, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 763 (2014); https://doi.org/10.1016/j.saa.2013.06.078
F. Paison, B. Su, D. Pan, T. Yan and J. Wu, Austin Biochem., 5, 1025 (2020).
M. Selvaganapathy and N. Raman, J. Chem. Biol. Ther., 2, 108 (2016); https://doi.org/10.4172/2572-0406.1000108
Y. Jiang, L.R. Widger, G.D. Kasper, M.A. Siegler and D.P. Goldberg, J. Am. Chem. Soc., 132, 12214 (2010); https://doi.org/10.1021/ja105591q
A. Dey, S.P. Jeffrey, M.Y. Darensbourg, K.O. Hodgson, B. Hedman and E.I. Solomon, Inorg. Chem., 46, 4989 (2007); https://doi.org/10.1021/ic070244l
D. Kumar, T.N. Nguyen and C.A. Grapperhaus, Inorg. Chem., 53, 12372 (2014); https://doi.org/10.1021/ic501695n
C.A. Masitas, M. Kumar, M.S. Mashuta, P.M. Kozlowski and C.A. Grapperhaus, Inorg. Chem., 49, 10875 (2010); https://doi.org/10.1021/ic101221z
W.B. Tolman, J. Biol. Inorg. Chem., 11, 261 (2006); https://doi.org/10.1007/s00775-006-0078-9
S.A. Mirza, R.O. Day and M.J. Maroney, Inorg. Chem., 35, 1992 (1996); https://doi.org/10.1021/ic950736a
W. Shin and P.A. Lindahl, Biochim. Biophys. Acta, 1161, 317 (1993); https://doi.org/10.1016/0167-4838(93)90231-F
J.M.C.C. Coremans, J.W. Van der Zwaan and S.P. Albracht, J. Biochim. Biophys. Acta, 1119, 157 (1992); https://doi.org/10.1016/0167-4838(92)90386-R
R.L. Charles, E. Schroder, G. May, P. Free, P.R.J. Gaffney, R. Wait, S. Begum, R.J. Heads and P. Eaton, Mol. Cell. Proteomics, 6, 1473 (2007); https://doi.org/10.1074/mcp.M700065-MCP200
C. Jacob, I. Knight and P.G. Winyard, Biol. Chem., 387, 1385 (2006); https://doi.org/10.1515/BC.2006.174
A.C. McQuilken and D.P. Goldberg, Dalton Trans., 41, 10883 (2012); https://doi.org/10.1039/c2dt30806a
D. Kumar, Ph.D. Thesis, Sulfur-Oxidation Enhances Nitrile Hydration in Bioinspired Ruthenium Complexes: Catalytic, Kinetic and DFT Investigations, University of Louisville, Louisville, Kentucky, USA (2015).
J. Amaro-Gahete, M.V. Pavliuk, H. Tian, D. Esquivel, F.J. RomeroSalguero and S. Ott, Coord. Chem. Rev., 448, 214172 (2021); https://doi.org/10.1016/j.ccr.2021.214172
D. Tietze, J. Sartorius, B. Koley Seth, K. Herr, P. Heimer, D. Imhof, D. Mollenhauer and G. Buntkowsky, Sci. Rep., 7, 17194 (2017); https://doi.org/10.1038/s41598-017-17446-3
T. Sriskandakumar, H. Petzold, P.C.A. Bruijnincx, A. Habtemariam, P.J. Sadler and P. Kennepohl, J. Am. Chem. Soc., 131, 13355 (2009); https://doi.org/10.1021/ja903405z
Y. You and W. Nam, Chem. Soc. Rev., 41, 7061 (2012); https://doi.org/10.1039/c2cs35171d
H.-F. Chen, C. Wu, M.-C. Kuo, M.E. Thompson and K.-T. Wong, J. Mater. Chem., 22, 9556 (2012); https://doi.org/10.1039/c2jm30443k
S. Sato, T. Morikawa, T. Kajino and O. Ishitani, Angew. Chem. Int. Ed., 52, 988 (2013); https://doi.org/10.1002/anie.201206137
D.R. Whang, K. Sakai and S.Y. Park, Angew. Chem. Int. Ed., 52, 11612 (2013); https://doi.org/10.1002/anie.201305684
T.B. Fleetham, Z. Wang and J. Li, Inorg. Chem., 52, 7338 (2013); https://doi.org/10.1021/ic3023453
E. Baranoff, J.-H. Yum, I. Jung, R. Vulcano, M. Grätzel and M.K. Nazeeruddin, Chem. Asian J., 5, 496 (2010); https://doi.org/10.1002/asia.200900429
S. Moromizato, Y. Hisamatsu, T. Suzuki, Y. Matsuo, R. Abe and S. Aoki, Inorg. Chem., 51, 12697 (2012); https://doi.org/10.1021/ic301310q
A.O. Adeloye and P.A. Ajibade, Molecules, 19, 12421 (2014); https://doi.org/10.3390/molecules190812421
G. Li, D. Zhu, X. Wang, Z. Su and M.R. Bryce, Chem. Soc. Rev., 49, 765 (2020); https://doi.org/10.1039/C8CS00660A
V.W.-W. Yam and K.M.-C. Wong, Chem. Commun., 47, 11579 (2011); https://doi.org/10.1039/c1cc13767k
D. Ashen-Garry and M. Selke, Photochem. Photobiol., 90, 257 (2014); https://doi.org/10.1111/php.12211
E.L. Clennan and A. Pace, Tetrahedron, 61, 6665 (2005); https://doi.org/10.1016/j.tet.2005.04.017
D.M. Wagnerová and K. Lang, Coord. Chem. Rev., 255, 2904 (2011); https://doi.org/10.1016/j.ccr.2011.06.017
D. Kessel and T.H. Foster, Photochem. Photobiol., 83, 995 (2007); https://doi.org/10.1111/j.1751-1097.2007.00201.x
D.J. Lambeth, Nat. Rev. Immunol., 4, 181 (2004); https://doi.org/10.1038/nri1312
S.D. Cummings and R. Eisenberg, J. Am. Chem. Soc., 118, 1949 (1996); https://doi.org/10.1021/ja951345y
D. Zhang, Y. Bin, L. Tallorin, F. Tse, B. Hernandez, E.V. Mathias, T. Stewart, R. Bau and M. Selke, Inorg. Chem., 52, 1676 (2013); https://doi.org/10.1021/ic3020578
C.A. Grapperhaus, S. Poturovic and M.S. Mashuta, Inorg. Chem., 44, 8185 (2005); https://doi.org/10.1021/ic051211d
C.G. Monsour, C.M. Decosto, B.J. Tafolla-Aguirre, L.A. Morales and M. Selke, Photochem. Photobiol., 97, 1219 (2021); https://doi.org/10.1111/php.13487
J.-P.R. Chauvin and D.A. Pratt, Angew. Chem. Int. Ed., 56, 6255 (2017); https://doi.org/10.1002/anie.201610402
L.A.H. van Bergen, G. Roos and F. De Proft, J. Phys. Chem. A, 118, 6078 (2014); https://doi.org/10.1021/jp5018339
R. Kassim, C. Ramseyer and M. Enescu, Inorg. Chem., 50, 5407 (2011); https://doi.org/10.1021/ic200267x
X. Song, M.G. Fanelli, J.M. Cook, F. Bai and C.A. Parish, J. Phys. Chem. A, 116, 4934 (2012); https://doi.org/10.1021/jp301919g
R. Acharyya, S. Dutta, F. Basuli, S.-M. Peng, G.-H. Lee, L.R. Falvello and S. Bhattacharya, Inorg. Chem., 45, 1252 (2006); https://doi.org/10.1021/ic050505w
B. Mala, L.E. Murtagh, C.M.A. Farrow, G.R. Akien, N.R. Halcovich, S.L. Allinson, J.A. Platts and M.P. Coogan, Inorg. Chem., 60, 7031 (2021); https://doi.org/10.1021/acs.inorgchem.0c03553
P. Römbke, A. Schier and H. Schmidbaur, Dalton Trans., 2482 (2001); https://doi.org/10.1039/b104001b
M. Tamura, K. Tsuge, A. Igashira-Kamiyama and T. Konno, Chem. Commun., 47, 12464 (2011); https://doi.org/10.1039/c1cc14342e
U. Das, T. Ghorui, B. Adhikari, S. Roy, S. Pramanik and K. Pramanik, Dalton Trans., 44, 8625 (2015); https://doi.org/10.1039/C5DT00448A
A. Moneo-Corcuera, B. Pato-Doldan, I. Sánchez-Molina, D. NietoCastro and J.R. Galán-Mascarós, Molecules, 26, 6020 (2021); https://doi.org/10.3390/molecules26196020
M. Kumar, G.J. Colpas, R.O. Day and M.J. Maroney, J. Am. Chem. Soc., 111, 8323 (1989); https://doi.org/10.1021/ja00203a068
D.L. Herting, C.P. Sloan, A.W. Cabral and J.H. Krueger, Inorg. Chem., 17, 1649 (1978); https://doi.org/10.1021/ic50184a053
D. Kumar, C.A. Masitas, T.N. Nguyen and C.A. Grapperhaus, Chem. Commun., 49, 294 (2013); https://doi.org/10.1039/C2CC35256G
C.A. Grapperhaus, M.J. Maguire, T. Tuntulani and M.Y. Darensbourg, Inorg. Chem., 36, 1860 (1997); https://doi.org/10.1021/ic970050d
P.J. Farmer, T. Solouki, T. Soma, D.H. Russell and M.Y. Darensbourg, Inorg. Chem., 32, 4171 (1993); https://doi.org/10.1021/ic00072a002
D. Zhang, B. Hernandez and M. Selke, J. Sulphur Chem., 29, 377 (2008); https://doi.org/10.1080/17415990802146980
T. Tuntulani, G. Musie, J.H. Reibenspies and M.Y. Darensbourg, Inorg. Chem., 34, 6279 (1995); https://doi.org/10.1021/ic00129a012
M.Y. Darensbourg, P.J. Farmer, T. Soma, D.H. Russell, T. Solouki and J.H. Reibenspies, Eds.: D.H.R. Barton, A.E. Martell and D.T. Sawyer, The Activation of Dioxygen and Homogeneous Catalytic Oxidation; Plenum Press: New York, p. 209 (1993).
F. Jensen, J. Org. Chem., 57, 6478 (1992); https://doi.org/10.1021/jo00050a022
M. Selke, W.L. Karney, S.I. Khan and C.S. Foote, Inorg. Chem., 34, 5715 (1995); https://doi.org/10.1021/ic00127a007
P. Pyykko, Chem. Rev., 88, 563 (1988); https://doi.org/10.1021/cr00085a006
C.A. Grapperhaus, M.Y. Darensbourg, L.W. Sumner and D.H. Russell, J. Am. Chem. Soc., 118, 1791 (1996); https://doi.org/10.1021/ja953489i
C.A. Grapperhaus and M.Y. Darensbourg, Acc. Chem. Res., 31, 451 (1998); https://doi.org/10.1021/ar950048v
M. Tamura, K. Tsuge, A. Igashira-Kamiyama and T. Konno, Inorg. Chem., 50, 4764 (2011); https://doi.org/10.1021/ic102319p
R.A. Begum, A.A. Farah, H.N. Hunter and A.B.P. Lever, Inorg. Chem., 48, 2018 (2009); https://doi.org/10.1021/ic801898t
W.B. Connick and H.B. Gray, J. Am. Chem. Soc., 119, 11620 (1997); https://doi.org/10.1021/ja9723803
C.S. Keating, B.A. McClure, J.J. Rack and I.V. Rubtsov, J. Chem. Phys., 133, 144513 (2010); https://doi.org/10.1063/1.3482708
M. Lauter, D.K. Breitinger, R. Breiter, J. Mink and E. Bencze, J. Mol. Struct., 563-564, 383 (2001); https://doi.org/10.1016/S0022-2860(00)00795-X
M.G. O’Toole, M. Kreso, P.M. Kozlowski, M.S. Mashuta and C.A. Grapperhaus, J. Biol. Inorg. Chem., 13, 1219 (2008); https://doi.org/10.1007/s00775-008-0405-4
S.M. Bonesi, M. Fagnoni and A. Albini, J. Org. Chem., 69, 928 (2004); https://doi.org/10.1021/jo035679e
M. Ciclosi, C. Dinoi, L. Gonsalvi, M. Peruzzini, E. Manoury and R. Poli, Organometallics, 27, 2281 (2008); https://doi.org/10.1021/om800035f
S.M. Bonesi, S. Crespi, D. Merli, I. Manet and A. Albini, J. Org. Chem., 82, 9054 (2017); https://doi.org/10.1021/acs.joc.7b01518
M.R.E. da Silva, T. Auvray, B. Laramée-Milette, M.P. Franco, A.A.C. Braga, H.E. Toma and G.S. Hanan, Inorg. Chem., 57, 4898 (2018); https://doi.org/10.1021/acs.inorgchem.7b02965
M. Selke, Reactions of Metal Complexes with Singlet Oxygen, In: PATAI’S Chemistry of Functional Groups, John Wiley & Sons Ltd.: Chichester, U.K., pp 1-50 (2016).
M. Bregnhøj, M. Westberg, F. Jensen and P.R. Ogilby, Phys. Chem. Chem. Phys., 18, 22946 (2016); https://doi.org/10.1039/C6CP01635A
S.D. Cummings and R. Eisenberg, Eds.: K.D. Karlin and E.I. Stiefel, Luminescence and Photochemistry of Metal Dithiolene Complexes, In: Dithiolene Chemistry: Synthesis, Properties and Applications, Wiley, Chap. 6, p. 315 (2003).
V.H. Nguyen, H.Q. Chew, B. Su and J.H.K. Yip, Inorg. Chem., 53, 9739 (2014); https://doi.org/10.1021/ic501278n
C.E. Paulsen and K.S. Carroll, Chem. Rev., 113, 4633 (2013); https://doi.org/10.1021/cr300163e
J. Yasuda, K. Inoue, K. Mizuno, S. Arai, K. Uehara, A. Kikuchi, Y.-N. Yan, K. Yamanishi, Y. Kataoka, M. Kato, A. Kawai and T. Kawamoto, Inorg. Chem., 58, 15720 (2019); https://doi.org/10.1021/acs.inorgchem.9b01492
P. Lugo-Mas, A. Dey, L. Xu, S.D. Davin, J. Benedict, W. Kaminsky, K.O. Hodgson, B. Hedman, E.I. Solomon and J.A. Kovacs, J. Am. Chem. Soc., 128, 11211 (2006); https://doi.org/10.1021/ja062706k
R.M. Buonomo, I. Font, M.J. Maguire, J.H. Reibenspies, T. Tuntulani and M.Y. Darensbourg, J. Am. Chem. Soc., 117, 963 (1995); https://doi.org/10.1021/ja00108a013
G.N. Schrauzer, C. Zhang and R. Chadha, Inorg. Chem., 29, 4104 (1990); https://doi.org/10.1021/ic00345a039
G. Von Poelhsitz, B.L. Rodrigues and A.A. Batista, Acta Crystallogr. C, C62, m424 (2006); https://doi.org/10.1107/S0108270106027491
T. Yano, Y. Wasada-Tsutsui, Y. Kajita, T. Shibayama, Y. Funahasi, T. Ozawa and H. Masuda, Chem. Lett., 37, 66 (2008); https://doi.org/10.1246/cl.2008.66
L. Heinrich, Y. Li, J. Vaissermann and J.-C. Chottard, Eur. J. Inorg. Chem., 2001, 1407 (2001); https://doi.org/10.1002/1099-0682(200106)2001:6<1407::AIDEJIC1407>3.0.CO;2-P
H. Petzold and P.J. Sadler, Chem. Commun., 37, 4413 (2008); https://doi.org/10.1039/b805358h
H. Petzold, J. Xu and P.J. Sadler, Angew. Chem. Int. Ed., 47, 3008 (2008); https://doi.org/10.1002/anie.200705342
F.Y. Wang, S. Weidt, J.J. Xu, C.L. Mackay, P.R.R. Langridge-Smith and P.J. Sadler, J. Am. Soc. Mass Spectrom., 19, 544 (2008); https://doi.org/10.1016/j.jasms.2007.12.002
A.T. Odularu, P.A. Ajibade, J.Z. Mbese and O.O. Oyedeji, J. Chem., 2019, 5459461 (2019); https://doi.org/10.1155/2019/5459461
K. Goto, M. Holler and R. Okazaki, J. Am. Chem. Soc., 119, 1460 (1997); https://doi.org/10.1021/ja962994s
I. Ascone, L. Messori, A. Casini, C. Gabbiani, A. Balerna, F. Dell’Unto and A.C. Castellano, Inorg. Chem., 47, 8629 (2008); https://doi.org/10.1021/ic8001477
T.V. Harris, R.K. Szilagyi and K.L. McFarlane Holman, J. Biol. Inorg. Chem., 14, 891 (2009); https://doi.org/10.1007/s00775-009-0501-0
N. Cutillas, G. S. Yellol, C. de Haro, C. Vicente, V. Rodríguez and J. Ruiz, Coord. Chem. Rev., 257, 2784 (2013); https://doi.org/10.1016/j.ccr.2013.03.024
K.D. Mjos and C. Orvig, Chem. Rev., 114, 4540 (2014); https://doi.org/10.1021/cr400460s
M. Mbaba, T.M. Golding and G.S. Smith, Molecules, 25, 5276 (2020); https://doi.org/10.3390/molecules25225276
J.M. Gichumbi and H.B. Friedrich, J. Organomet. Chem., 866, 123 (2018); https://doi.org/10.1016/j.jorganchem.2018.04.02
G.H. Ribeiro, A.P.M. Guedes, T.D. de Oliveira, C.R.S.T. de Correia, L. Colina-Vegas, M.A. Lima, J.A. Nóbrega, M.R. Cominetti, F.V. Rocha, A.G. Ferreira, E.E. Castellano, F.R. Teixeira and A.A. Batista, Inorg. Chem., 59, 15004 (2020); https://doi.org/10.1021/acs.inorgchem.0c01835
L. Xu, N.-J. Zhong, Y.-Y. Xie, H.-L. Huang, G.-B. Jiang and Y.-J. Liu, PLoS One, 9, e96082 (2014); https://doi.org/10.1371/journal.pone.0096082
Y.S. Tan, C.I. Yeo, E.R.T. Tiekink and P.J. Heard, Inorganics, 9, 60 (2021); https://doi.org/10.3390/inorganics9080060
A. Levina, A. Mitra and P.A. Lay, Metallomics, 1, 458 (2009); https://doi.org/10.1039/b904071d
L. Shadap, V. Banothu, E. Pinder, R.M. Phillips, W. Kaminsky and M.R. Kollipara, J. Coord. Chem., 73, 1538 (2020); https://doi.org/10.1080/00958972.2020.1777547
A.A. Adeniyi and P.A. Ajibade, Rev. Inorg. Chem., 36, 53 (2016); https://doi.org/10.1515/revic-2015-0008
R. Kanaoujiya, M. Singh, J. Singh and S. Srivastava, J. Scientific Res., 64, 264 (2020); https://doi.org/10.37398/JSR.2020.640150