Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication, Characterization and NH3 Sensing Properties of Zinc Supported TiO2 Doped Polypyrrole Nanocomposite Thin Films
Corresponding Author(s) : Anand Patil
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
A series of conductive and porous Zn/TiO2 doped polypyrrole (PPy) nanocomposites thin films were prepared by adding Zn/TiO2 (5, 10, 15, 20 and 25 wt.%) in an aqueous solution of polypyrrole using a chemical oxidative polymerization process at room temperature. The prepared Zn/TiO2-PPy films were characterized by electrical resistivity by two probe techniques, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface morphology of Zn/TiO2-PPy films has found signicant influence on the gas sensing properties. Results from FTIR and XRD verified the structural formation of Zn/TiO2-PPy films from the pyrrole monomer. When the amount of Zn/TiO2 increased, the optical absorption in visible (500-700 nm) and UV (200-400 nm) regions decreases, according to an analysis of the optical characteristics of all tested films. The NH3 gas was used to examine the prepeared nanocomposites thin films’ sensing properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.K. Tripathy and A. Pattanaik, Opt. Mater., 53, 123 (2016); https://doi.org/10.1016/j.optmat.2016.01.012
- A.J. Haider, R.H. AL- Anbari, G.R. Kadhim and C.T. Salame, Energy Procedia, 119, 332 (2017); https://doi.org/10.1016/j.egypro.2017.07.117
- S. Sen, S. Mahanty, S. Roy, O. Heintz, S. Bourgeois and D. Chaumont, Thin Solid Films, 474, 245 (2005); https://doi.org/10.1016/j.tsf.2004.04.004
- J. Deng, M. Wang, J. Fang, X. Song, Z. Yang and Z. Yuan, J. Alloys Compd., 791, 371 (2019); https://doi.org/10.1016/j.jallcom.2019.03.306
- R. Foulady-Dehaghi and M. Behpour, Inorg. Chem. Commun., 117, 107946 (2020); https://doi.org/10.1016/j.inoche.2020.107946
- N. Ahmadi, A. Nemati and M. Solati-Hashjin, Mater. Sci. Semicond. Process., 26, 41 (2014); https://doi.org/10.1016/j.mssp.2014.04.006
- Y. Cao, W. Yang, W. Zhang, G. Liu and P. Yue, New J. Chem., 28, 218 (2004); https://doi.org/10.1039/b306845e
- J.C. Yu, J. Lin and R.W. Kwok, J. Phys. Chem. B, 102, 5094 (1998); https://doi.org/10.1021/jp980332e
- L.K. Gaur, P. Kumar, D. Kushavah, K.R. Khiangte, M.C. Mathpal, V. Agrahari, S.P. Gairola, M.A.G. Soler, H.C. Swart and A. Agarwal, J. Alloys Compd., 780, 25 (2019); https://doi.org/10.1016/j.jallcom.2018.11.344
- K. Kalantari, M. Kalbasi, M. Sohrabi and S.J. Royaee, Ceram. Int., 43, 973 (2017); https://doi.org/10.1016/j.ceramint.2016.10.028
- G. Zhu, Z. Cheng, T. Lv, L. Pan, Q. Zhao and Z. Sun, Nanoscale, 2, 1229 (2010); https://doi.org/10.1039/c0nr00087f
- L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang and H. Fu, J. Phys. Chem. B, 110, 17860 (2006); https://doi.org/10.1021/jp063148z
- J. Ye, B. Li, M. Li, Y. Zheng, S. Wu and Y. Han, Acta Biomater., 107, 313 (2020); https://doi.org/10.1016/j.actbio.2020.02.036
- J. Yu and X. Yu, Environ. Sci. Technol., 42, 4902 (2008); https://doi.org/10.1021/es800036n
- S.A. Waghuley, S.M. Yenorkar, S.S. Yawale and S.P. Yawale, J. Sens. Transducers, 79, 1180 (2007).
- H. Kato, O. Nishikawa, T. Matsui, S. Honma and H. Kokado, J. Phys. Chem., 95, 6014 (1991); https://doi.org/10.1021/j100168a055
- N.V. Bhat, A.P. Gadre and V.A. Bambole, J. Appl. Polym. Sci., 80, 2511 (2001); https://doi.org/10.1002/app.1359
- T.K. Vishnuvardhan, V.R. Kulkarni, C. Basavaraja and S.C. Raghavendra, Bull. Mater. Sci., 29, 77 (2006); https://doi.org/10.1007/BF02709360
- J. Wang, S. Chen and M.S. Lin, J. Electroanal. Chem., 273, 231 (1989); https://doi.org/10.1016/0022-0728(89)87016-0
- F. El-Tantawy, K.M. Abdelkader, F.K. Ko and Y.K. Sung, Eur. Polym. J., 40, 415 (2004); https://doi.org/10.1016/j.eurpolymj.2003.10.013
- S. Mofokeng, V. Kumar, R. Kroon and O. Ntwaeaborwa, J. Alloys Compd., 711, 121 (2017); https://doi.org/10.1016/j.jallcom.2017.03.345
- S.A. El All and G.A. El-Shobaky, J. Alloys Compd., 479, 91 (2009); https://doi.org/10.1016/j.jallcom.2009.01.071
- C.M. Muiva, T.S. Sathiaraj and K. Maabong, Ceram. Int., 37, 555 (2011); https://doi.org/10.1016/j.ceramint.2010.09.042
- D.F. Swinehart, J. Chem. Educ., 39, 333 (1962); https://doi.org/10.1021/ed039p333
- A.H. Omran Alkhayatt and S.K. Hussian, Mater. Lett., 155, 109 (2015); https://doi.org/10.1016/j.matlet.2015.04.130
- J. Li and X. Liu, Mater. Lett., 112, 39 (2013); https://doi.org/10.1016/j.matlet.2013.08.094
- M. Omastová, M. Trchová, J. Kovárová and J. Stejskal, Synth. Met., 138, 447 (2003); https://doi.org/10.1016/S0379-6779(02)00498-8
- P. Chitra, A. Muthusamy and R. Jayaprakash, J. Magn. Magn. Mater., 396, 113 (2015); https://doi.org/10.1016/j.jmmm.2015.08.042
- P.P. Sengupta, S. Barik and B. Adhikari, Mater. Manuf. Process., 21, 263 (2006); https://doi.org/10.1080/10426910500464602
- A. Beniwal and Sunny, Sens. Actuators B Chem., 296, 126660 (2019); https://doi.org/10.1016/j.snb.2019.126660
- D. Zhang, Z. Wu, X. Zong and Y. Zhang, Sens. Actuators B Chem., 274, 575 (2018); https://doi.org/10.1016/j.snb.2018.08.001
- Y. Li, M. Jiao and M. Yang, Sens. Actuators B Chem., 238, 596 (2017); https://doi.org/10.1016/j.snb.2016.07.089
- J. Zhang, X. Liu, S. Wu, H. Xu and B. Cao, Sens. Actuators B Chem., 186, 695 (2013); https://doi.org/10.1016/j.snb.2013.06.063
- T. Jiang, Z. Wang, Z. Li, W. Wang, X. Xu, X. Liu, J. Wang and C. Wang, J. Mater. Chem. C Mater. Opt. Electron. Devices, 1, 3017 (2013); https://doi.org/10.1039/c3tc00370a
References
S.K. Tripathy and A. Pattanaik, Opt. Mater., 53, 123 (2016); https://doi.org/10.1016/j.optmat.2016.01.012
A.J. Haider, R.H. AL- Anbari, G.R. Kadhim and C.T. Salame, Energy Procedia, 119, 332 (2017); https://doi.org/10.1016/j.egypro.2017.07.117
S. Sen, S. Mahanty, S. Roy, O. Heintz, S. Bourgeois and D. Chaumont, Thin Solid Films, 474, 245 (2005); https://doi.org/10.1016/j.tsf.2004.04.004
J. Deng, M. Wang, J. Fang, X. Song, Z. Yang and Z. Yuan, J. Alloys Compd., 791, 371 (2019); https://doi.org/10.1016/j.jallcom.2019.03.306
R. Foulady-Dehaghi and M. Behpour, Inorg. Chem. Commun., 117, 107946 (2020); https://doi.org/10.1016/j.inoche.2020.107946
N. Ahmadi, A. Nemati and M. Solati-Hashjin, Mater. Sci. Semicond. Process., 26, 41 (2014); https://doi.org/10.1016/j.mssp.2014.04.006
Y. Cao, W. Yang, W. Zhang, G. Liu and P. Yue, New J. Chem., 28, 218 (2004); https://doi.org/10.1039/b306845e
J.C. Yu, J. Lin and R.W. Kwok, J. Phys. Chem. B, 102, 5094 (1998); https://doi.org/10.1021/jp980332e
L.K. Gaur, P. Kumar, D. Kushavah, K.R. Khiangte, M.C. Mathpal, V. Agrahari, S.P. Gairola, M.A.G. Soler, H.C. Swart and A. Agarwal, J. Alloys Compd., 780, 25 (2019); https://doi.org/10.1016/j.jallcom.2018.11.344
K. Kalantari, M. Kalbasi, M. Sohrabi and S.J. Royaee, Ceram. Int., 43, 973 (2017); https://doi.org/10.1016/j.ceramint.2016.10.028
G. Zhu, Z. Cheng, T. Lv, L. Pan, Q. Zhao and Z. Sun, Nanoscale, 2, 1229 (2010); https://doi.org/10.1039/c0nr00087f
L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang and H. Fu, J. Phys. Chem. B, 110, 17860 (2006); https://doi.org/10.1021/jp063148z
J. Ye, B. Li, M. Li, Y. Zheng, S. Wu and Y. Han, Acta Biomater., 107, 313 (2020); https://doi.org/10.1016/j.actbio.2020.02.036
J. Yu and X. Yu, Environ. Sci. Technol., 42, 4902 (2008); https://doi.org/10.1021/es800036n
S.A. Waghuley, S.M. Yenorkar, S.S. Yawale and S.P. Yawale, J. Sens. Transducers, 79, 1180 (2007).
H. Kato, O. Nishikawa, T. Matsui, S. Honma and H. Kokado, J. Phys. Chem., 95, 6014 (1991); https://doi.org/10.1021/j100168a055
N.V. Bhat, A.P. Gadre and V.A. Bambole, J. Appl. Polym. Sci., 80, 2511 (2001); https://doi.org/10.1002/app.1359
T.K. Vishnuvardhan, V.R. Kulkarni, C. Basavaraja and S.C. Raghavendra, Bull. Mater. Sci., 29, 77 (2006); https://doi.org/10.1007/BF02709360
J. Wang, S. Chen and M.S. Lin, J. Electroanal. Chem., 273, 231 (1989); https://doi.org/10.1016/0022-0728(89)87016-0
F. El-Tantawy, K.M. Abdelkader, F.K. Ko and Y.K. Sung, Eur. Polym. J., 40, 415 (2004); https://doi.org/10.1016/j.eurpolymj.2003.10.013
S. Mofokeng, V. Kumar, R. Kroon and O. Ntwaeaborwa, J. Alloys Compd., 711, 121 (2017); https://doi.org/10.1016/j.jallcom.2017.03.345
S.A. El All and G.A. El-Shobaky, J. Alloys Compd., 479, 91 (2009); https://doi.org/10.1016/j.jallcom.2009.01.071
C.M. Muiva, T.S. Sathiaraj and K. Maabong, Ceram. Int., 37, 555 (2011); https://doi.org/10.1016/j.ceramint.2010.09.042
D.F. Swinehart, J. Chem. Educ., 39, 333 (1962); https://doi.org/10.1021/ed039p333
A.H. Omran Alkhayatt and S.K. Hussian, Mater. Lett., 155, 109 (2015); https://doi.org/10.1016/j.matlet.2015.04.130
J. Li and X. Liu, Mater. Lett., 112, 39 (2013); https://doi.org/10.1016/j.matlet.2013.08.094
M. Omastová, M. Trchová, J. Kovárová and J. Stejskal, Synth. Met., 138, 447 (2003); https://doi.org/10.1016/S0379-6779(02)00498-8
P. Chitra, A. Muthusamy and R. Jayaprakash, J. Magn. Magn. Mater., 396, 113 (2015); https://doi.org/10.1016/j.jmmm.2015.08.042
P.P. Sengupta, S. Barik and B. Adhikari, Mater. Manuf. Process., 21, 263 (2006); https://doi.org/10.1080/10426910500464602
A. Beniwal and Sunny, Sens. Actuators B Chem., 296, 126660 (2019); https://doi.org/10.1016/j.snb.2019.126660
D. Zhang, Z. Wu, X. Zong and Y. Zhang, Sens. Actuators B Chem., 274, 575 (2018); https://doi.org/10.1016/j.snb.2018.08.001
Y. Li, M. Jiao and M. Yang, Sens. Actuators B Chem., 238, 596 (2017); https://doi.org/10.1016/j.snb.2016.07.089
J. Zhang, X. Liu, S. Wu, H. Xu and B. Cao, Sens. Actuators B Chem., 186, 695 (2013); https://doi.org/10.1016/j.snb.2013.06.063
T. Jiang, Z. Wang, Z. Li, W. Wang, X. Xu, X. Liu, J. Wang and C. Wang, J. Mater. Chem. C Mater. Opt. Electron. Devices, 1, 3017 (2013); https://doi.org/10.1039/c3tc00370a