Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Behaviour of Green Synthesized Silver Nanoparticles using Camellia sinensis Leaves: Impacts on Photophysical Behaviour of Benzofuran Derivative
Corresponding Author(s) : Ashok H. Sidarai
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
Green synthesis of silver nanoparticles (AgNPs) using Camellia sinensis leaf extract was used as a reducing agent. Electrochemical studies of green synthesized AgNPs were investigated using the cyclic voltammetry technique. The effect of modifier composition, scan rate and various concentrations of AgNPs were studied. Photophysical approach of fluorescence emission study of N-(2,5-dimethyl-pyrrol-1-yl)-2-(6-methoxy-benzofuran-3-yl)acetamide (DPMBA) dissolved in ethanol. Increasing the concentration of AgNPs decreases the fluorescence intensity and fluorescence lifetime of the DPMBA molecule. This experiment has been carried out at room temperature. The Stern-Volmer (S-V) plot obtained in steady-state and transient state methods. The zeta potential of green synthesized AgNPs was found to be -33.9 mV. This large negative zeta potential represents repulsion among AgNPs and dispersion stability. Furthermore, the computational studies such as molecular docking studies, drug-likeness, Fukui function analysis, molecular electrostatic potential (MEP) and ground state optimized geometry were also conducted. The morphology and particle size of biogenic AgNPs were characterized by transmission electron microscopy (TEM) with electron dispersive X-ray spectroscopy (EDX).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.-H. Miao, Y.-H Hu, J. Yang, T. Liu, J. Sun and X.-J. Wang, RSC Adv., 9, 27510 (2019); https://doi.org/10.1039/C9RA04917G
- H. Khanam and Shamsuzzaman, Eur. J. Med. Chem., 97, 483 (2015); https://doi.org/10.1016/j.ejmech.2014.11.039
- J. Farhat, L. Alzyoud, M. Alwahsh and B. Al-Omari, Cancers, 14, 2196 (2022); https://doi.org/10.3390/cancers14092196
- P. Krawczyk, J. Mol. Model., 26, 272 (2020); https://doi.org/10.1007/s00894-020-04539-6
- S.K. Boruah, P.K. Boruah, P. Sarma and C. Medhi, Adv. Mater. Lett., 3, 481 (2012); https://doi.org/10.5185/amlett.2012.icnano.103
- G. Ksv, J. Nanomed. Biotherap. Disc., 7, 1 (2017); https://doi.org/10.4172/2155-983X.1000151
- S.R. Sethilkumar and T. Sivakumar, Int. J. Pharm. Pharm. Sci., 6, 461 (2014).
- S. Samanta, J. Am. Coll. Nutr., 41, 65 (2022); https://doi.org/10.1080/07315724.2020.1827082
- S. Linic, U. Aslam, C. Boerigter and M. Morabito, Nat. Mater., 14, 567 (2015); https://doi.org/10.1038/nmat4281
- V.S. Negalurmath, Ph.D. Thesis, Synthesis of Some Heterocyclic Compounds and Study of their Biological Activities, Karnatak University, Dharwad, India (2019).
- S. Ponarulselvam, C. Panneerselvam, K. Murugan, K. Kalimuthu, N. Aarthi and S. Thangamani, Asian Pac. J. Trop. Biomed., 2, 574 (2012); https://doi.org/10.1016/S2221-1691(12)60100-2
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li and J.E. Knox, Gaussian Inc., Wallingford, CT (2004).
- A.B. Nielsen and A.J. Holder, Gauss View 5.0 User’s Reference, Gaussian Inc, Pittsburgh (2009).
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- J.R. Lakowicz, Principle of Fluorescence Spectroscopy, Springer, Ed. 3 (2006).
- T.O. Olomola, M.J. Mphahlele and S. Gildenhuys, Bioorg. Chem., 100, 103945 (2020); https://doi.org/10.1016/j.bioorg.2020.103945
- G.L. Delogu, B. Era, S. Floris, R. Medda, V. Sogos, F. Pintus, G. Gatto, A. Kumar, G.T. Westermark and A. Fais, Int. J. Biol. Macromol., 169, 428 (2021); https://doi.org/10.1016/j.ijbiomac.2020.12.117
- F. Azimi, H. Azizian, M. Najaf, G. Khodarahmi, M. Hassanzadeh, J.B. Ghasemi, L. Saghaei, M.A. Faramarzi, B. Larijani, F. Hassanzadeh and M. Mahdavi, Sci. Rep., 11, 20776 (2021); https://doi.org/10.1038/s41598-021-99899-1
- Z. Xie, G. Wang, J. Wang, M. Chen, Y. Peng, L. Li, B. Deng, S. Chen and W. Li, Molecules, 22, 659 (2017); https://doi.org/10.3390/molecules22040659
- M. Solangi, Kanwal, K. Mohammed Khan, F. Saleem, S. Hameed, J. Iqbal, Z. Shafique, U. Qureshi, Z. Ul-Haq, M. Taha and S. Perveen, Bioorg. Med. Chem., 28, 115605 (2020); https://doi.org/10.1016/j.bmc.2020.115605
- I. Çapan, S. Servi, I. Yildirim and Y. Sert, ChemistrySelect, 6, 5838 (2021); https://doi.org/10.1002/slct.202101086
References
Y.-H. Miao, Y.-H Hu, J. Yang, T. Liu, J. Sun and X.-J. Wang, RSC Adv., 9, 27510 (2019); https://doi.org/10.1039/C9RA04917G
H. Khanam and Shamsuzzaman, Eur. J. Med. Chem., 97, 483 (2015); https://doi.org/10.1016/j.ejmech.2014.11.039
J. Farhat, L. Alzyoud, M. Alwahsh and B. Al-Omari, Cancers, 14, 2196 (2022); https://doi.org/10.3390/cancers14092196
P. Krawczyk, J. Mol. Model., 26, 272 (2020); https://doi.org/10.1007/s00894-020-04539-6
S.K. Boruah, P.K. Boruah, P. Sarma and C. Medhi, Adv. Mater. Lett., 3, 481 (2012); https://doi.org/10.5185/amlett.2012.icnano.103
G. Ksv, J. Nanomed. Biotherap. Disc., 7, 1 (2017); https://doi.org/10.4172/2155-983X.1000151
S.R. Sethilkumar and T. Sivakumar, Int. J. Pharm. Pharm. Sci., 6, 461 (2014).
S. Samanta, J. Am. Coll. Nutr., 41, 65 (2022); https://doi.org/10.1080/07315724.2020.1827082
S. Linic, U. Aslam, C. Boerigter and M. Morabito, Nat. Mater., 14, 567 (2015); https://doi.org/10.1038/nmat4281
V.S. Negalurmath, Ph.D. Thesis, Synthesis of Some Heterocyclic Compounds and Study of their Biological Activities, Karnatak University, Dharwad, India (2019).
S. Ponarulselvam, C. Panneerselvam, K. Murugan, K. Kalimuthu, N. Aarthi and S. Thangamani, Asian Pac. J. Trop. Biomed., 2, 574 (2012); https://doi.org/10.1016/S2221-1691(12)60100-2
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li and J.E. Knox, Gaussian Inc., Wallingford, CT (2004).
A.B. Nielsen and A.J. Holder, Gauss View 5.0 User’s Reference, Gaussian Inc, Pittsburgh (2009).
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
J.R. Lakowicz, Principle of Fluorescence Spectroscopy, Springer, Ed. 3 (2006).
T.O. Olomola, M.J. Mphahlele and S. Gildenhuys, Bioorg. Chem., 100, 103945 (2020); https://doi.org/10.1016/j.bioorg.2020.103945
G.L. Delogu, B. Era, S. Floris, R. Medda, V. Sogos, F. Pintus, G. Gatto, A. Kumar, G.T. Westermark and A. Fais, Int. J. Biol. Macromol., 169, 428 (2021); https://doi.org/10.1016/j.ijbiomac.2020.12.117
F. Azimi, H. Azizian, M. Najaf, G. Khodarahmi, M. Hassanzadeh, J.B. Ghasemi, L. Saghaei, M.A. Faramarzi, B. Larijani, F. Hassanzadeh and M. Mahdavi, Sci. Rep., 11, 20776 (2021); https://doi.org/10.1038/s41598-021-99899-1
Z. Xie, G. Wang, J. Wang, M. Chen, Y. Peng, L. Li, B. Deng, S. Chen and W. Li, Molecules, 22, 659 (2017); https://doi.org/10.3390/molecules22040659
M. Solangi, Kanwal, K. Mohammed Khan, F. Saleem, S. Hameed, J. Iqbal, Z. Shafique, U. Qureshi, Z. Ul-Haq, M. Taha and S. Perveen, Bioorg. Med. Chem., 28, 115605 (2020); https://doi.org/10.1016/j.bmc.2020.115605
I. Çapan, S. Servi, I. Yildirim and Y. Sert, ChemistrySelect, 6, 5838 (2021); https://doi.org/10.1002/slct.202101086