Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comparative 4f-4f Spectral Analysis of Simultaneous Complexation of Pr(III) with L-Tryptophan in Presence and Absence of Ca2+ and Zn2+ Ions in Aqueous Medium: Energy, Intensity and Kinetic Studies
Corresponding Author(s) : Thiyam David Singh
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
The spectral analysis of the complexation of praseodymium (Pr3+) with L-tryptophan in various aqueous solvent applying a quantitative probe of 4f-4f transition spectra. The study is carried out by calculating various energy interaction parameters such as the nephelauxetic effect (β), percent covalency (δ), bonding parameter (b1/2), Slater-Condon (Fk) and intensity parameters like oscillator strength (P) and intensity of Judd-Ofelt parameters Tλ (λ = 2, 4, 6). The paramagnetic behaviour of Pr3+ shows 3H4→1D2, 3H4→3P0, 3H4→3P1, 3H4→3P2 types of specific 4f-4f absorption bands and are observed at the visible reason of 427-610 nm. The intensities of 4f-4f transition bands rise on the addition of Ca2+ and Zn2+ ions toward the complexation of praseodymium (Pr3+):Try and extended result in the case of Ca2+ ion compared to the Zn2+ ion due to increase in the interaction between ligand and 4f orbital of metal ions. These bands on immediate minor’s coordination change around praseodymium (Pr3+) found to be highly sensitive due to the formation of heterobimetallic complex between L-tryptophan (Try) with Pr3+ in the existence of Zn2+ and Ca2+ ions. The complexation of Try with Pr3+ in the presence of Zn2+ and Ca2+ ions are monitors simultaneously from the sensitivity of the bands using energy parameters and oscillator strength. The rate of heterobimetallic complexation of both Zn2+ and Ca2+ ions was calculated from the 4f-4f transition at different temperatures. The thermodynamic parameters and activation energy calculated from the rate constants from different temperatures are more favourable in case of Try form complex with Pr3+ in the presence of Ca2+ ion as compared to Zn2+ ion.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.-C.G. Bünzli, S. Comby, A.-S. Chauvin and C.D.B. Vandevyver, J. Rare Earths, 25, 257 (2007); https://doi.org/10.1016/S1002-0721(07)60420-7
- I. Hemmila and V. Laitala, J. Fluoresc., 15, 529 (2005); https://doi.org/10.1007/s10895-005-2826-6
- K.S. Gupta, RM. Kadam and P.K. Pujari, Coord. Chem. Rev., 420, 21340 (2020); https://doi.org/10.1016/j.ccr.2020.213405
- E. Pidcock and G.R. Moore, J. Biol. Inorg. Chem., 6, 479 (2001); https://doi.org/10.1007/s007750100214
- X. Wang, Y. Xie and J. Sun, Polyhedron, 15, 3569 (1996); https://doi.org/10.1016/0277-5387(96)00074-5
- J. Legendziewicz, G. Oczko, R. Wiglusz and V. Amirkhanov, J. Alloys Compd., 323-324, 792 (2001); https://doi.org/10.1016/S0925-8388(01)01147-1
- H. Masuda, T. Sugimori, A. Odani and O. Yamauchi, Inorg. Chim. Acta, 180, 73 (1991); https://doi.org/10.1016/S0020-1693(00)83068-6
- O. Yamauchi, A. Odani and M. Takani, J. Chem. Soc., Dalton Trans., 3411 (2002); https://doi.org/10.1039/B202385G
- Y. Ueda, H. Taketomi and N. Go, Biopolymers, 17, 1531 (1978); https://doi.org/10.1002/bip.1978.360170612
- A.J. de Jesus and T.W. Allen, Biochim. Biophys. Acta-Biomemb., 1828, 864 (2013); https://doi.org/10.1016/j.bbamem.2012.09.009
- B.G. Jean-Claude, Handbook on the Physicals and Chemical of Rare Earths, vol. 50, p. 141 (2016).
- R.D. Peacock, Mol. Phys., 33, 1239 (1977). https://doi.org/10.1080/00268977700101051
- N. Bendangsenla, T. Moaienla, Th. David Singh, Ch. Sumitra, N.R. Singh and M.I. Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 103, 160 (2013); https://doi.org/10.1016/j.saa.2012.11.011
- B. Huidrom, N.R. Devi, Th. David Singh and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 85, 127 (2012); https://doi.org/10.1016/j.saa.2011.09.045
- M. Xu, Z.-R. Ma, L. Huang, F.-J. Chen and Z. Zeng, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 503 (2011); https://doi.org/10.1016/j.saa.2010.11.018
- A.A. Khan, H.A. Hussain and K. Iftikar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 2087 (2004); https://doi.org/10.1016/j.saa.2003.10.042
- H.A. Hussain, A.A. Ansari and K. Iftikhar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 873 (2004); https://doi.org/10.1016/S1386-1425(03)00312-3
- E.T. Nomkoko, G.E. Jackson and B.S. Nakani, Dalton Trans., 1432 (2004); https://doi.org/10.1039/B316698H
- W.T. Carnall, P.R. Fields and K. Rajnak, J. Chem. Phys., 49, 4424 (1968); https://doi.org/10.1063/1.1669893
- W.T. Carnall, P.R. Fields and R. Sarup, J. Chem. Phys., 51, 2587 (1969); https://doi.org/10.1063/1.1672382
- E.Y. Wong, J. Chem. Phys., 35, 544 (1961); https://doi.org/10.1063/1.1731965
- D.E. Henrie, Mol. Phys., 28, 415 (1974); https://doi.org/10.1080/00268977400102941
- W. Lamb, R. Young and S.R. La Paglia, J. Chem. Phys., 49, 2868 (1968); https://doi.org/10.1063/1.1670507
- R.A. Gangi and L. Burnelle, J. Chem. Phys., 55, 843 (1971); https://doi.org/10.1063/1.1676153.
- K. Binnemans and C. Gorller-Walrand, J. Phys. Condens. Matter, 10, L167 (1998); https://doi.org/10.1088/0953-8984/10/10/002
- C. Görller-Walrand, L. Fluyt, P. Porcher, A.A.S. Da Gama, G.F. De Sa, W.T. Carnall and G.L. Goodman, J. Less Common Met., 148, 339 (1989); https://doi.org/10.1016/0022-5088(89)90049-0
- W.T. Carnall, P.R. Fields and B.G. Wybourne, J. Chem. Phys., 42, 3797 (1965); https://doi.org/10.1063/1.1695840
- C.V. Devi and N.R. Singh, Arab. J. Chem., 10, S2124 (2017); https://doi.org/10.1016/j.arabjc.2013.07.044
- C. Sumitra, T.D. Singh, M.I. Devi and N.R. Singh, J. Alloys Compd., 451, 365 (2008); https://doi.org/10.1016/j.jallcom.2007.04.153
- T.D. Singh, C. Sumitra, N. Yaiphaba, H.D. Devi, M.I. Devi and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 1219 (2005); https://doi.org/10.1016/j.saa.2004.06.044
References
J.-C.G. Bünzli, S. Comby, A.-S. Chauvin and C.D.B. Vandevyver, J. Rare Earths, 25, 257 (2007); https://doi.org/10.1016/S1002-0721(07)60420-7
I. Hemmila and V. Laitala, J. Fluoresc., 15, 529 (2005); https://doi.org/10.1007/s10895-005-2826-6
K.S. Gupta, RM. Kadam and P.K. Pujari, Coord. Chem. Rev., 420, 21340 (2020); https://doi.org/10.1016/j.ccr.2020.213405
E. Pidcock and G.R. Moore, J. Biol. Inorg. Chem., 6, 479 (2001); https://doi.org/10.1007/s007750100214
X. Wang, Y. Xie and J. Sun, Polyhedron, 15, 3569 (1996); https://doi.org/10.1016/0277-5387(96)00074-5
J. Legendziewicz, G. Oczko, R. Wiglusz and V. Amirkhanov, J. Alloys Compd., 323-324, 792 (2001); https://doi.org/10.1016/S0925-8388(01)01147-1
H. Masuda, T. Sugimori, A. Odani and O. Yamauchi, Inorg. Chim. Acta, 180, 73 (1991); https://doi.org/10.1016/S0020-1693(00)83068-6
O. Yamauchi, A. Odani and M. Takani, J. Chem. Soc., Dalton Trans., 3411 (2002); https://doi.org/10.1039/B202385G
Y. Ueda, H. Taketomi and N. Go, Biopolymers, 17, 1531 (1978); https://doi.org/10.1002/bip.1978.360170612
A.J. de Jesus and T.W. Allen, Biochim. Biophys. Acta-Biomemb., 1828, 864 (2013); https://doi.org/10.1016/j.bbamem.2012.09.009
B.G. Jean-Claude, Handbook on the Physicals and Chemical of Rare Earths, vol. 50, p. 141 (2016).
R.D. Peacock, Mol. Phys., 33, 1239 (1977). https://doi.org/10.1080/00268977700101051
N. Bendangsenla, T. Moaienla, Th. David Singh, Ch. Sumitra, N.R. Singh and M.I. Devi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 103, 160 (2013); https://doi.org/10.1016/j.saa.2012.11.011
B. Huidrom, N.R. Devi, Th. David Singh and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 85, 127 (2012); https://doi.org/10.1016/j.saa.2011.09.045
M. Xu, Z.-R. Ma, L. Huang, F.-J. Chen and Z. Zeng, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 503 (2011); https://doi.org/10.1016/j.saa.2010.11.018
A.A. Khan, H.A. Hussain and K. Iftikar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 2087 (2004); https://doi.org/10.1016/j.saa.2003.10.042
H.A. Hussain, A.A. Ansari and K. Iftikhar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 873 (2004); https://doi.org/10.1016/S1386-1425(03)00312-3
E.T. Nomkoko, G.E. Jackson and B.S. Nakani, Dalton Trans., 1432 (2004); https://doi.org/10.1039/B316698H
W.T. Carnall, P.R. Fields and K. Rajnak, J. Chem. Phys., 49, 4424 (1968); https://doi.org/10.1063/1.1669893
W.T. Carnall, P.R. Fields and R. Sarup, J. Chem. Phys., 51, 2587 (1969); https://doi.org/10.1063/1.1672382
E.Y. Wong, J. Chem. Phys., 35, 544 (1961); https://doi.org/10.1063/1.1731965
D.E. Henrie, Mol. Phys., 28, 415 (1974); https://doi.org/10.1080/00268977400102941
W. Lamb, R. Young and S.R. La Paglia, J. Chem. Phys., 49, 2868 (1968); https://doi.org/10.1063/1.1670507
R.A. Gangi and L. Burnelle, J. Chem. Phys., 55, 843 (1971); https://doi.org/10.1063/1.1676153.
K. Binnemans and C. Gorller-Walrand, J. Phys. Condens. Matter, 10, L167 (1998); https://doi.org/10.1088/0953-8984/10/10/002
C. Görller-Walrand, L. Fluyt, P. Porcher, A.A.S. Da Gama, G.F. De Sa, W.T. Carnall and G.L. Goodman, J. Less Common Met., 148, 339 (1989); https://doi.org/10.1016/0022-5088(89)90049-0
W.T. Carnall, P.R. Fields and B.G. Wybourne, J. Chem. Phys., 42, 3797 (1965); https://doi.org/10.1063/1.1695840
C.V. Devi and N.R. Singh, Arab. J. Chem., 10, S2124 (2017); https://doi.org/10.1016/j.arabjc.2013.07.044
C. Sumitra, T.D. Singh, M.I. Devi and N.R. Singh, J. Alloys Compd., 451, 365 (2008); https://doi.org/10.1016/j.jallcom.2007.04.153
T.D. Singh, C. Sumitra, N. Yaiphaba, H.D. Devi, M.I. Devi and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 1219 (2005); https://doi.org/10.1016/j.saa.2004.06.044