Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Utilization of Medical Mask Wastes as Filter Material for Air Purification Units
Corresponding Author(s) : Slamet
Asian Journal of Chemistry,
Vol. 34 No. 12 (2022): Vol 34 Issue 12, 2022
Abstract
The COVID-19 pandemic significantly increased the amount of infectious medical wastes produced, with medical mask wastes being one of the largest contributors. Present research focuses on trying to turn medical mask waste into a functioning air filter by modifying it with CuO/TiO2 to reduce the amount of infectious medical wastes laying around. Synthesis of CuO/TiO2 was confirmed with FESEM-EDX, UV-Vis DRS and XRD techniques. The optimum amount of Cu added (1%wt of TiO2) was determined by assessing the degradation performance of the modified medical mask wastes against an organic pollutant (methylene blue) and a biological pollutant (S. aureus). The filter was then integrated into a simple air purifying unit and complemented with a UV-C germicidal lamp and a plasma ion generator. The prototype of the simple air purifying unit was able to degrade 100% tobacco smoke in less than 15 min and 30.8% CO gas in 30 min.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.R. Anugerah, P.S. Muttaqin and D.A. Purnama, Environ. Res., 197, 111164 (2021); https://doi.org/10.1016/j.envres.2021.111164
- K. Vohra, A. Vodonos, J. Schwartz, E.A. Marais, M.P. Sulprizio and L.J. Mickley, Environ. Res., 195, 110754 (2021); https://doi.org/10.1016/j.envres.2021.110754
- M. Qiu, D. Jayasekara and A. Jayasekara, Cureus, 14, e25824 (2022); https://doi.org/10.7759/cureus.25824
- S. Chandran, M. Avari, B.P. Cherian and C. Suarez, BMJ Case Rep., 14, e243726 (2021); https://doi.org/10.1136/bcr-2021-243726
- R.F. O'Toole, Clin. Microbiol. Infect., 27, 1772 (2021); https://doi.org/10.1016/j.cmi.2021.06.001
- T. Rume and S.M.D. Islam, Heliyon, 6, e04965 (2020); https://doi.org/10.1016/j.heliyon.2020.e04965
- S. Dharmaraj, V. Ashokkumar, S. Hariharan, A. Manibharathi, P.L. Show, C.T. Chong and C. Ngamcharussrivichai, Chemosphere, 272, 129601 (2021); https://doi.org/10.1016/j.chemosphere.2021.129601
- Slamet and M. Ibadurrohman, Indones. J. Ind. Res., 3, 1 (2009).
- E.J. Wolfrum, J. Huang, D.M. Blake, P.C. Maness, Z. Huang, J. Fiest and W.A. Jacoby, Environ. Sci. Technol., 36, 3412 (2002); https://doi.org/10.1021/es011423j
- T. Koklic, I. Urbancic, I. Zdovc, M. Golob, P. Umek, Z. Arsov, G. Drazic, Š. Pintaric, M. Dobeic and J. Štrancar, PLoS One, 13, e0201490 (2018); https://doi.org/10.1371/journal.pone.0201490
- C. Thunyasirinon, P. Sribenjalux, S. Supothina and P. Chuaybamroong, Aerosol Air Qual. Res., 15, 600 (2015); https://doi.org/10.4209/aaqr.2014.01.0009
- S.W. Choi, H.M. Shahbaz, J.U. Kim, D. Kim, S. Yoon, S.H. Jeong, J. Park and D. Lee, Appl. Sci., 10, 4493 (2020); https://doi.org/10.3390/app10134493
- E.H. Choi, H.S. Uhm and N.K. Kaushik, AAPPS Bull., 31, 10 (2021); https://doi.org/10.1007/s43673-021-00012-5
- C.S. Poon, Q. Huang and P.C. Fung, Chemosphere, 38, 1005 (1999); https://doi.org/10.1016/S0045-6535(98)00350-6
- J.S. Smith, H. Hanseler, R. Rattray, M. Campbell, T. Brotherton, J. Welle, T. Moudgil, T.F. Pack, K. Wegmann, S. Jensen, J. Jin, C.B. Bifulco, S.A. Prahl, B.A. Fox and N.L. Stucky, J. Clin. Transl. Res., 5, e10 (2021); https://doi.org/10.1017/cts.2020.494
- C. Huang, H. Bai, Y. Huang, S. Liu, S. Yen and Y. Tseng, Int. J. Photoenergy, 2012, 620764 (2012); https://doi.org/10.1155/2012/620764
- W.-B. Tsai, J.-Y. Kao, T.-M. Wu and W.-T. Cheng, J. Nanopart., 2016, 6539581 (2016); https://doi.org/10.1155/2016/6539581
- E. Pakdel, W.A. Daoud and X. Wang, Appl. Surf. Sci., 275, 397 (2013); https://doi.org/10.1016/j.apsusc.2012.10.141
- M. Ibadurrohman, Slamet and I.H. Dwirekso, Evergreen, 7, 285 (2020); https://doi.org/10.5109/4055234
- N.A. Jamalluddin and A.Z. Abdullah, J. Ultrason. Sonochem., 18, 669 (2011); https://doi.org/10.1016/j.ultsonch.2010.09.004
- R. Pilasombat, H. Daly, A. Goguet, J.P. Breen, R. Burch, C. Hardacre and D. Thompsett, Catal. Today, 180, 131 (2012); https://doi.org/10.1016/j.cattod.2011.04.053
- M.M.A.E. Fadl and M.E.A. Ali, Int. J. Environ., 7, 16 (2018).
- C. Kaweeteerawat, C.H. Chang, K.R. Roy, R. Liu, R. Li, D. Toso, H. Fischer, A. Ivask, Z. Ji, J.I. Zink, Z.H. Zhou, G.F. Chanfreau, D. Telesca, Y. Cohen, P.A. Holden, A.E. Nel and H.A. Godwin, ACS Nano, 9, 7215 (2015); https://doi.org/10.1021/acsnano.5b02021
- L. Liu, B. John and K.L. Yeung, J. Environ. Sci. (China), 21, 700 (2009); https://doi.org/10.1016/S1001-0742(08)62327-X
References
A.R. Anugerah, P.S. Muttaqin and D.A. Purnama, Environ. Res., 197, 111164 (2021); https://doi.org/10.1016/j.envres.2021.111164
K. Vohra, A. Vodonos, J. Schwartz, E.A. Marais, M.P. Sulprizio and L.J. Mickley, Environ. Res., 195, 110754 (2021); https://doi.org/10.1016/j.envres.2021.110754
M. Qiu, D. Jayasekara and A. Jayasekara, Cureus, 14, e25824 (2022); https://doi.org/10.7759/cureus.25824
S. Chandran, M. Avari, B.P. Cherian and C. Suarez, BMJ Case Rep., 14, e243726 (2021); https://doi.org/10.1136/bcr-2021-243726
R.F. O'Toole, Clin. Microbiol. Infect., 27, 1772 (2021); https://doi.org/10.1016/j.cmi.2021.06.001
T. Rume and S.M.D. Islam, Heliyon, 6, e04965 (2020); https://doi.org/10.1016/j.heliyon.2020.e04965
S. Dharmaraj, V. Ashokkumar, S. Hariharan, A. Manibharathi, P.L. Show, C.T. Chong and C. Ngamcharussrivichai, Chemosphere, 272, 129601 (2021); https://doi.org/10.1016/j.chemosphere.2021.129601
Slamet and M. Ibadurrohman, Indones. J. Ind. Res., 3, 1 (2009).
E.J. Wolfrum, J. Huang, D.M. Blake, P.C. Maness, Z. Huang, J. Fiest and W.A. Jacoby, Environ. Sci. Technol., 36, 3412 (2002); https://doi.org/10.1021/es011423j
T. Koklic, I. Urbancic, I. Zdovc, M. Golob, P. Umek, Z. Arsov, G. Drazic, Š. Pintaric, M. Dobeic and J. Štrancar, PLoS One, 13, e0201490 (2018); https://doi.org/10.1371/journal.pone.0201490
C. Thunyasirinon, P. Sribenjalux, S. Supothina and P. Chuaybamroong, Aerosol Air Qual. Res., 15, 600 (2015); https://doi.org/10.4209/aaqr.2014.01.0009
S.W. Choi, H.M. Shahbaz, J.U. Kim, D. Kim, S. Yoon, S.H. Jeong, J. Park and D. Lee, Appl. Sci., 10, 4493 (2020); https://doi.org/10.3390/app10134493
E.H. Choi, H.S. Uhm and N.K. Kaushik, AAPPS Bull., 31, 10 (2021); https://doi.org/10.1007/s43673-021-00012-5
C.S. Poon, Q. Huang and P.C. Fung, Chemosphere, 38, 1005 (1999); https://doi.org/10.1016/S0045-6535(98)00350-6
J.S. Smith, H. Hanseler, R. Rattray, M. Campbell, T. Brotherton, J. Welle, T. Moudgil, T.F. Pack, K. Wegmann, S. Jensen, J. Jin, C.B. Bifulco, S.A. Prahl, B.A. Fox and N.L. Stucky, J. Clin. Transl. Res., 5, e10 (2021); https://doi.org/10.1017/cts.2020.494
C. Huang, H. Bai, Y. Huang, S. Liu, S. Yen and Y. Tseng, Int. J. Photoenergy, 2012, 620764 (2012); https://doi.org/10.1155/2012/620764
W.-B. Tsai, J.-Y. Kao, T.-M. Wu and W.-T. Cheng, J. Nanopart., 2016, 6539581 (2016); https://doi.org/10.1155/2016/6539581
E. Pakdel, W.A. Daoud and X. Wang, Appl. Surf. Sci., 275, 397 (2013); https://doi.org/10.1016/j.apsusc.2012.10.141
M. Ibadurrohman, Slamet and I.H. Dwirekso, Evergreen, 7, 285 (2020); https://doi.org/10.5109/4055234
N.A. Jamalluddin and A.Z. Abdullah, J. Ultrason. Sonochem., 18, 669 (2011); https://doi.org/10.1016/j.ultsonch.2010.09.004
R. Pilasombat, H. Daly, A. Goguet, J.P. Breen, R. Burch, C. Hardacre and D. Thompsett, Catal. Today, 180, 131 (2012); https://doi.org/10.1016/j.cattod.2011.04.053
M.M.A.E. Fadl and M.E.A. Ali, Int. J. Environ., 7, 16 (2018).
C. Kaweeteerawat, C.H. Chang, K.R. Roy, R. Liu, R. Li, D. Toso, H. Fischer, A. Ivask, Z. Ji, J.I. Zink, Z.H. Zhou, G.F. Chanfreau, D. Telesca, Y. Cohen, P.A. Holden, A.E. Nel and H.A. Godwin, ACS Nano, 9, 7215 (2015); https://doi.org/10.1021/acsnano.5b02021
L. Liu, B. John and K.L. Yeung, J. Environ. Sci. (China), 21, 700 (2009); https://doi.org/10.1016/S1001-0742(08)62327-X