Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Spectroscopic, DFT, HOMO-LUMO, MEP, Mulliken Analysis and Antimicrobial Properties of Novel Arsenic(III) Dithiocarbamate Complex
Corresponding Author(s) : Sundaramoorthy Tamilvanan
Asian Journal of Chemistry,
Vol. 34 No. 11 (2022): Vol 34 Issue 11, 2022
Abstract
The novel arsenic dithiocarbamate complex was synthesized and characterized by elemental analysis, NMR and FTIR. Density functional theory (DFT) was used to calculate quantum mechanical computations of a tris(N,N-difurfuryldithiocarbamato)arsenic(III) molecule employing the standard B3LYP basis set with the GAUSSIAN 09 program. The molecular structure was confirmed using geometrical parameters, vibrational analysis (FT-IR), 13C NMR and 1H NMR (GIAO technique). The HOMO-LUMO energy gap, Mulliken population analysis, contour map and molecular electrostatic potential (MEP) surfaces have all been determined using molecular orbital calculations. The minimal HOMO-LUMO energy values shows that charge transfer is possible within the molecule. Gram-positive and Gram-negative bacteria, as well as fungal species, were used to investigate the compound antimicrobial susceptibility. The results demonstrated that even at high concentrations, the complex was effective against the microorganisms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.T. Odularu and P.A. Ajibade, Bioorg. Chem. Appl., 2019, 8260496 (2019); https://doi.org/10.1155/2019/8260496
- D. Ramirez, A. Abellán-Victorio, V. Beretta, A. Camargo and D.A. Moreno, Int. J. Mol. Sci., 21, 1998 (2020); https://doi.org/10.3390/ijms21061998
- T.O. Ajiboye, T.T. Ajiboye, R. Marzouki and D.C. Onwudiwe, Int. J. Mol. Sci., 23, 1317 (2022); https://doi.org/10.3390/ijms23031317
- G. Hogarth, Mini-Rev. Med. Chem., 12, 1202 (2012); https://doi.org/10.2174/138955712802762095
- R. Cea-Olivares, R.A. Toscano, C. Silvestru, P. Garcia-Garcia, M. Lopez-Cardoso, G. Blass-Amador and H. Noth, J. Organomet. Chem., 493, 61 (1995); https://doi.org/10.1016/0022-328X(95)05342-M
- M. Styblo and D.J. Thomas, Biochem. Pharmacol., 49, 971 (1995); https://doi.org/10.1016/0006-2952(95)00008-N
- M. Stoytcheva, V. Sharkova and M. Panayotova, Anal. Chim. Acta, 364, 195 (1998); https://doi.org/10.1016/S0003-2670(98)00134-2
- R.A. Zakharyan and H.V. Aposhian, Chem. Res. Toxicol., 12, 1278 (1999); https://doi.org/10.1021/tx9901231
- S.S. Garje, V.K. Jain and E.R.T. Tiekink, J. Organomet. Chem., 538, 129 (1997); https://doi.org/10.1016/S0022-328X(96)06905-7
- A.A. Aly, A.B. Brown, T.M.I. Bedair and E.A. Ishak, J. Sulphur Chem., 33, 605 (2012); https://doi.org/10.1080/17415993.2012.718349
- M.S. Kang, E.K. Choi, D.H. Choi, S.-Y. Ryu, H.-H. Lee, H.-C. Kang, J.-T. Koh, O.-S. Kim, Y.-C. Hwang, S.-J. Yoon, S.-M. Kim, K.-H. Yang and I.-C. Kang, FEMS Microbiol. Lett., 280, 250 (2008); https://doi.org/10.1111/j.1574-6968.2008.01069.x
- H. Nabipour, S. Ghammamy, S. Ashuri and Z.S. Aghbolagh, Org. Chem. J., 2, 75 (2010).
- R. Ghorbani-Vaghei, M. Amiri and H. Veisi, Bull. Korean Chem. Soc., 33, 4047 (2012); https://doi.org/10.5012/bkcs.2012.33.12.4047
- N. Manav, A.K. Mishra and N.K. Kaushik, Spectrochim. Acta A Mol. Biomol. Spectrosc., 65, 32 (2006); https://doi.org/10.1016/j.saa.2005.09.023
- N.F. Kamaludin, N. Awang, I. Baba, A. Hamid and C.K. Meng, Pak. J. Biol. Sci., 16, 12 (2012); https://doi.org/10.3923/pjbs.2013.12.21
- S.Z. Khan, M.K. Amir, I. Ullah, A. Aamir, J.M. Pezzuto, T. Kondratyuk, F. Bélanger-Gariepy, A. Ali, S. Khan and Zia-ur-Rehman, Appl. Organomet. Chem., 30, 392 (2016); https://doi.org/10.1002/aoc.3445
- A.S. Sonia and R. Bhaskaran, J. Mol. Struct., 1134, 416 (2017); https://doi.org/10.1016/j.molstruc.2016.12.097
- C.I. Yeo, E.R.T. Tiekink and J. Chew, Inorganics, 9, 48 (2021); https://doi.org/10.3390/inorganics9060048
- B.N. Saglik, Y. Özkay, Ü.D. Özkay and H.K. Gençer, J. Chem., 2014, 387309 (2014); https://doi.org/10.1155/2014/387309
- S. Tamilvanan, G. Gurumoorthy, S. Thirumaran and S. Ciattini, Polyhedron, 121, 70 (2017); https://doi.org/10.1016/j.poly.2016.09.038
- S. Tamilvanan, Asian J. Chem., 34, 42 (2021); https://doi.org/10.14233/ajchem.2022.23409
- M. Alam and S. Park, J. Mol. Struct., 1159, 33 (2018); https://doi.org/10.1016/j.molstruc.2018.01.043
- S. Tamilvanan, G. Gurumoorthy, S. Thirumaran and S. Ciattini, Polyhedron, 123, 111 (2017); https://doi.org/10.1016/j.poly.2016.10.026
- H.L.M. Van Gaal, J.W. Diesveld, F.W. Pijpers and J.G.M. Van der Linden, Inorg. Chem., 18, 3251 (1979); https://doi.org/10.1021/ic50201a062
- T.A. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2
References
A.T. Odularu and P.A. Ajibade, Bioorg. Chem. Appl., 2019, 8260496 (2019); https://doi.org/10.1155/2019/8260496
D. Ramirez, A. Abellán-Victorio, V. Beretta, A. Camargo and D.A. Moreno, Int. J. Mol. Sci., 21, 1998 (2020); https://doi.org/10.3390/ijms21061998
T.O. Ajiboye, T.T. Ajiboye, R. Marzouki and D.C. Onwudiwe, Int. J. Mol. Sci., 23, 1317 (2022); https://doi.org/10.3390/ijms23031317
G. Hogarth, Mini-Rev. Med. Chem., 12, 1202 (2012); https://doi.org/10.2174/138955712802762095
R. Cea-Olivares, R.A. Toscano, C. Silvestru, P. Garcia-Garcia, M. Lopez-Cardoso, G. Blass-Amador and H. Noth, J. Organomet. Chem., 493, 61 (1995); https://doi.org/10.1016/0022-328X(95)05342-M
M. Styblo and D.J. Thomas, Biochem. Pharmacol., 49, 971 (1995); https://doi.org/10.1016/0006-2952(95)00008-N
M. Stoytcheva, V. Sharkova and M. Panayotova, Anal. Chim. Acta, 364, 195 (1998); https://doi.org/10.1016/S0003-2670(98)00134-2
R.A. Zakharyan and H.V. Aposhian, Chem. Res. Toxicol., 12, 1278 (1999); https://doi.org/10.1021/tx9901231
S.S. Garje, V.K. Jain and E.R.T. Tiekink, J. Organomet. Chem., 538, 129 (1997); https://doi.org/10.1016/S0022-328X(96)06905-7
A.A. Aly, A.B. Brown, T.M.I. Bedair and E.A. Ishak, J. Sulphur Chem., 33, 605 (2012); https://doi.org/10.1080/17415993.2012.718349
M.S. Kang, E.K. Choi, D.H. Choi, S.-Y. Ryu, H.-H. Lee, H.-C. Kang, J.-T. Koh, O.-S. Kim, Y.-C. Hwang, S.-J. Yoon, S.-M. Kim, K.-H. Yang and I.-C. Kang, FEMS Microbiol. Lett., 280, 250 (2008); https://doi.org/10.1111/j.1574-6968.2008.01069.x
H. Nabipour, S. Ghammamy, S. Ashuri and Z.S. Aghbolagh, Org. Chem. J., 2, 75 (2010).
R. Ghorbani-Vaghei, M. Amiri and H. Veisi, Bull. Korean Chem. Soc., 33, 4047 (2012); https://doi.org/10.5012/bkcs.2012.33.12.4047
N. Manav, A.K. Mishra and N.K. Kaushik, Spectrochim. Acta A Mol. Biomol. Spectrosc., 65, 32 (2006); https://doi.org/10.1016/j.saa.2005.09.023
N.F. Kamaludin, N. Awang, I. Baba, A. Hamid and C.K. Meng, Pak. J. Biol. Sci., 16, 12 (2012); https://doi.org/10.3923/pjbs.2013.12.21
S.Z. Khan, M.K. Amir, I. Ullah, A. Aamir, J.M. Pezzuto, T. Kondratyuk, F. Bélanger-Gariepy, A. Ali, S. Khan and Zia-ur-Rehman, Appl. Organomet. Chem., 30, 392 (2016); https://doi.org/10.1002/aoc.3445
A.S. Sonia and R. Bhaskaran, J. Mol. Struct., 1134, 416 (2017); https://doi.org/10.1016/j.molstruc.2016.12.097
C.I. Yeo, E.R.T. Tiekink and J. Chew, Inorganics, 9, 48 (2021); https://doi.org/10.3390/inorganics9060048
B.N. Saglik, Y. Özkay, Ü.D. Özkay and H.K. Gençer, J. Chem., 2014, 387309 (2014); https://doi.org/10.1155/2014/387309
S. Tamilvanan, G. Gurumoorthy, S. Thirumaran and S. Ciattini, Polyhedron, 121, 70 (2017); https://doi.org/10.1016/j.poly.2016.09.038
S. Tamilvanan, Asian J. Chem., 34, 42 (2021); https://doi.org/10.14233/ajchem.2022.23409
M. Alam and S. Park, J. Mol. Struct., 1159, 33 (2018); https://doi.org/10.1016/j.molstruc.2018.01.043
S. Tamilvanan, G. Gurumoorthy, S. Thirumaran and S. Ciattini, Polyhedron, 123, 111 (2017); https://doi.org/10.1016/j.poly.2016.10.026
H.L.M. Van Gaal, J.W. Diesveld, F.W. Pijpers and J.G.M. Van der Linden, Inorg. Chem., 18, 3251 (1979); https://doi.org/10.1021/ic50201a062
T.A. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2