Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Cetyltrimethylammonium Bromide and Sodium Dodecyl Sulphate on Oxidation of Indigo Carmine with Potassium Peroxy Diphosphate: A Kinetic and Mechanistic Study
Corresponding Author(s) : Kalyana Chakravarthy Mutnuru
Asian Journal of Chemistry,
Vol. 34 No. 11 (2022): Vol 34 Issue 11, 2022
Abstract
The oxidative kinetic study of Indigo carmine (IC) with potassium peroxydiphosphate (PDP) in absence and presence of cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium dodecyl sulphate (SDS) micelles was studied in an aqueous sulphuric acid medium by maintaining the ionic strength at 3.0 mol dm-3 using sodium sulphate. The pseudo-zero-order constant was determined from the linear plots of absorbance versus time under the conditions [IC] < [PDP]. The reaction obeys zero-order kinetics with respect to varying [IC], first order kinetics with respect to varying [H+] and [PDP] in the absence and in presence of micelles. The reaction rate was accelerated with varying [CTAB] and [SDS] and reached a limiting value. The [surfactant] rate profile has limited nature since the reaction is unimolecular on the micelle surface. The binding constant of peroxy diphosphate was also determined with CTAB and SDS micelles by applying Berezin equation for the kinetic pattern.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chakraborty, S. Chowdhury and P. Das Saha, Carbohydr. Polym., 86, 1533 (2011); https://doi.org/10.1016/j.carbpol.2011.06.058
- S. Ibrahim, I. Fatimah, H.M. Ang and S. Wang, Water Sci. Technol., 62, 1177 (2010); https://doi.org/10.2166/wst.2010.388
- M.C.D. Ngaha, L.G. Djemmoe, F. Njanja and I.T. Kenfack, J. Encapsulation Adsorption Sci., 8, 156 (2018); https://doi.org/10.4236/jeas.2018.83008
- A.A. Jalil, S. Triwahyono, S.M. Adam, N.D. Rahim, M.A.A. Aziz, N.H.H. Hairom, N.A.M. Razali, M.A.Z. Abidin and M.K.A. Mohamadiah, J. Hazard. Mater., 181, 755 (2010); https://doi.org/10.1016/j.jhazmat.2010.05.078
- H.A. Hamad, W.A. Sadik, M.M. Abd El-latif, A.B. Kashyout and M.Y. Feteha, J. Environ. Sci. (China), 43, 26 (2016); https://doi.org/10.1016/j.jes.2015.05.033
- V.S. Mane and P.V. Vijay Babu, J. Taiwan Inst. Chem. Eng., 44, 81 (2013); https://doi.org/10.1016/j.jtice.2012.09.013
- U.A. Guler, M. Ersan, E. Tuncel and F. Dügenci, Process Saf. Environ. Prot., 99, 194 (2016); https://doi.org/10.1016/j.psep.2015.11.006
- M. Greluk and Z. Hubicki, Chem. Eng. J., 170, 184 (2011); https://doi.org/10.1016/j.cej.2011.03.052
- A. Andreotti, I. Bonaduce, M.P. Colombini and E. Ribechini, Rapid Commun. Mass Spectrom., 18, 1213 (2004); https://doi.org/10.1002/rcm.1464
- E.M. Saggioro, A.S. Oliveira, T. Pavesi, M. Jiménez-Tototzintle, M.I. Maldonado, F.V. Correia and J. Costa-Moreira1, Int. J. Photoenergy, 2015, 656153 (2015); https://doi.org/10.1155/2015/656153
- M.A. El Hamd, S.M. Derayea, O.H. Abdelmageed and H.F. Askal, Int. J. Spectrosc., 2013, 243059 (2013); https://doi.org/10.1155/2013/243059
- M.A. Sanromán, M. Pazos, M.T. Ricart and C. Cameselle, Chemosphere, 57, 233 (2004); https://doi.org/10.1016/j.chemosphere.2004.06.019
- M.T. Yagub, T.K. Sen, S. Afroze and H.M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014); https://doi.org/10.1016/j.cis.2014.04.002
- H. Benaïssa and M.A. Elouchdi, J. Hazard. Mater., 194, 69 (2011); https://doi.org/10.1016/j.jhazmat.2011.07.063
- P.S.N. Murty, K.V. Subbaiah and P.V. Subba Rao, React. Kinet. Catal. Lett., 11, 79 (1979); https://doi.org/10.1007/BF02098338
- J.N. Edokpayi, J.F. Iyun and S.O. Idris, Arch. Appl. Sci. Res., 2, 126 (2011).
- S.B. Jonnalagadda, R.H. Simoyi and G.K. Muthakia, J. Chem. Soc. Perkin. Trans. II, 1111 (1988); https://doi.org/10.1039/P29880001111
- M.K. Chakravarthy and K. Ramakrishna, J. Appl. Chem., 8, 403 (2019).
- G.G. Rao and N.V. Rao, Talanta, 8, 539 (1961); https://doi.org/10.1016/0039-9140(61)80132-X
- J. Mendham, R.C. Denney, J.D. Barnes and M.J.K. Thomas, Vogel’s, A Text Book of Vogels Quantitative Chemical Analysis, Prentice Hall, Ed.: 6 (1988).
- A.A. Green Sr., J.O. Edwards and P. Jones, Inorg. Chem., 5, 1858 (1966); https://doi.org/10.1021/ic50045a005
- Hong-Yan, Bull. Korean Chem. Soc., 24, 1444 (2003); https://doi.org/10.5012/bkcs.2003.24.10.1444
- F. Feigl, Spot tests in Organic Analysis, Elsevier Publishing Company: London, p. 540 (1966).
- M. Andersen, S.J.O. Edwards, S.A.A. Green and S.M.D. Wiswell, Inorg. Chim. Acta, 3, 655 (1969); https://doi.org/10.1016/S0020-1693(00)92571-4
- E. Chaffee, I.I. Creaser and J.O. Edwards, Inorg. Nucl. Chem. Lett., 7, 1 (1971); https://doi.org/10.1016/0020-1650(71)80111-3
- J.O. Edwards, R.J. Lussier and W.M. Risen Jr., J. Phys. Chem., 74, 4039 (1970); https://doi.org/10.1021/j100717a006
- P. Maruthamuthu, K.V. Seshadri and M. Santappa, Indian J. Chem., 10, 762 (1972).
- P. Maruthamuthu and M. Santappa, J. Inorg. Nucl. Chem., 37, 1305 (1975); https://doi.org/10.1016/0022-1902(75)80491-X
- P. Maruthamuthui and M. Santappa, Indian J. Chem., 14A, 35 (1975).
- S.K. Mandal, M. Das, D. Kar and A.K. Das, Indian J. Chem., 40A, 352 (2001).
- A. Rodríguez, M.D.M. Graciani, R. Balahura and M.L. Moyá, J. Phys. Chem., 100, 16978 (1996); https://doi.org/10.1021/jp961175r
- M. Al-Sayed Salem, A. Zaki and A.A. Ismail, Z. Phys. Chem., 192S, 87 (1995); https://doi.org/10.1524/zpch.1995.192.Part_1.087
- M. Islam, B. Saha and A.K. Das, J. Mol. Catal. Chem., 266, 21 (2007); https://doi.org/10.1016/j.molcata.2006.10.042
- W.V. Walter and R.G. Hayes, Biochim. Biophys. Acta, 249, 528 (1971); https://doi.org/10.1016/0005-2736(71)90128-3
References
S. Chakraborty, S. Chowdhury and P. Das Saha, Carbohydr. Polym., 86, 1533 (2011); https://doi.org/10.1016/j.carbpol.2011.06.058
S. Ibrahim, I. Fatimah, H.M. Ang and S. Wang, Water Sci. Technol., 62, 1177 (2010); https://doi.org/10.2166/wst.2010.388
M.C.D. Ngaha, L.G. Djemmoe, F. Njanja and I.T. Kenfack, J. Encapsulation Adsorption Sci., 8, 156 (2018); https://doi.org/10.4236/jeas.2018.83008
A.A. Jalil, S. Triwahyono, S.M. Adam, N.D. Rahim, M.A.A. Aziz, N.H.H. Hairom, N.A.M. Razali, M.A.Z. Abidin and M.K.A. Mohamadiah, J. Hazard. Mater., 181, 755 (2010); https://doi.org/10.1016/j.jhazmat.2010.05.078
H.A. Hamad, W.A. Sadik, M.M. Abd El-latif, A.B. Kashyout and M.Y. Feteha, J. Environ. Sci. (China), 43, 26 (2016); https://doi.org/10.1016/j.jes.2015.05.033
V.S. Mane and P.V. Vijay Babu, J. Taiwan Inst. Chem. Eng., 44, 81 (2013); https://doi.org/10.1016/j.jtice.2012.09.013
U.A. Guler, M. Ersan, E. Tuncel and F. Dügenci, Process Saf. Environ. Prot., 99, 194 (2016); https://doi.org/10.1016/j.psep.2015.11.006
M. Greluk and Z. Hubicki, Chem. Eng. J., 170, 184 (2011); https://doi.org/10.1016/j.cej.2011.03.052
A. Andreotti, I. Bonaduce, M.P. Colombini and E. Ribechini, Rapid Commun. Mass Spectrom., 18, 1213 (2004); https://doi.org/10.1002/rcm.1464
E.M. Saggioro, A.S. Oliveira, T. Pavesi, M. Jiménez-Tototzintle, M.I. Maldonado, F.V. Correia and J. Costa-Moreira1, Int. J. Photoenergy, 2015, 656153 (2015); https://doi.org/10.1155/2015/656153
M.A. El Hamd, S.M. Derayea, O.H. Abdelmageed and H.F. Askal, Int. J. Spectrosc., 2013, 243059 (2013); https://doi.org/10.1155/2013/243059
M.A. Sanromán, M. Pazos, M.T. Ricart and C. Cameselle, Chemosphere, 57, 233 (2004); https://doi.org/10.1016/j.chemosphere.2004.06.019
M.T. Yagub, T.K. Sen, S. Afroze and H.M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014); https://doi.org/10.1016/j.cis.2014.04.002
H. Benaïssa and M.A. Elouchdi, J. Hazard. Mater., 194, 69 (2011); https://doi.org/10.1016/j.jhazmat.2011.07.063
P.S.N. Murty, K.V. Subbaiah and P.V. Subba Rao, React. Kinet. Catal. Lett., 11, 79 (1979); https://doi.org/10.1007/BF02098338
J.N. Edokpayi, J.F. Iyun and S.O. Idris, Arch. Appl. Sci. Res., 2, 126 (2011).
S.B. Jonnalagadda, R.H. Simoyi and G.K. Muthakia, J. Chem. Soc. Perkin. Trans. II, 1111 (1988); https://doi.org/10.1039/P29880001111
M.K. Chakravarthy and K. Ramakrishna, J. Appl. Chem., 8, 403 (2019).
G.G. Rao and N.V. Rao, Talanta, 8, 539 (1961); https://doi.org/10.1016/0039-9140(61)80132-X
J. Mendham, R.C. Denney, J.D. Barnes and M.J.K. Thomas, Vogel’s, A Text Book of Vogels Quantitative Chemical Analysis, Prentice Hall, Ed.: 6 (1988).
A.A. Green Sr., J.O. Edwards and P. Jones, Inorg. Chem., 5, 1858 (1966); https://doi.org/10.1021/ic50045a005
Hong-Yan, Bull. Korean Chem. Soc., 24, 1444 (2003); https://doi.org/10.5012/bkcs.2003.24.10.1444
F. Feigl, Spot tests in Organic Analysis, Elsevier Publishing Company: London, p. 540 (1966).
M. Andersen, S.J.O. Edwards, S.A.A. Green and S.M.D. Wiswell, Inorg. Chim. Acta, 3, 655 (1969); https://doi.org/10.1016/S0020-1693(00)92571-4
E. Chaffee, I.I. Creaser and J.O. Edwards, Inorg. Nucl. Chem. Lett., 7, 1 (1971); https://doi.org/10.1016/0020-1650(71)80111-3
J.O. Edwards, R.J. Lussier and W.M. Risen Jr., J. Phys. Chem., 74, 4039 (1970); https://doi.org/10.1021/j100717a006
P. Maruthamuthu, K.V. Seshadri and M. Santappa, Indian J. Chem., 10, 762 (1972).
P. Maruthamuthu and M. Santappa, J. Inorg. Nucl. Chem., 37, 1305 (1975); https://doi.org/10.1016/0022-1902(75)80491-X
P. Maruthamuthui and M. Santappa, Indian J. Chem., 14A, 35 (1975).
S.K. Mandal, M. Das, D. Kar and A.K. Das, Indian J. Chem., 40A, 352 (2001).
A. Rodríguez, M.D.M. Graciani, R. Balahura and M.L. Moyá, J. Phys. Chem., 100, 16978 (1996); https://doi.org/10.1021/jp961175r
M. Al-Sayed Salem, A. Zaki and A.A. Ismail, Z. Phys. Chem., 192S, 87 (1995); https://doi.org/10.1524/zpch.1995.192.Part_1.087
M. Islam, B. Saha and A.K. Das, J. Mol. Catal. Chem., 266, 21 (2007); https://doi.org/10.1016/j.molcata.2006.10.042
W.V. Walter and R.G. Hayes, Biochim. Biophys. Acta, 249, 528 (1971); https://doi.org/10.1016/0005-2736(71)90128-3