Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Treatment of Organic Wastewater by Supercritical Water Oxidation
Corresponding Author(s) : Falah Kareem Hadi Al-Kaabi
Asian Journal of Chemistry,
Vol. 34 No. 11 (2022): Vol 34 Issue 11, 2022
Abstract
Supercritical water oxidation (SCWO) is a robust process in removing the hazardous organic wastes. Therefore, it is necessary to improve the SCWO process to eliminate the organic hazardous wastes. In present work, SCWO process used cyclohexylamine (CHA) as the organic chemical model. The co-oxidizers consisted of propylene glycol (PG), methanol and the oxygen source was hydrogen peroxide. The experiments were conducted using at a laboratory scale. A plug-flow reactor was utilized at different operating temperatures ranging from 425 to 525 ºC, the critical pressure was 25 MPa. At working temperatures, the co-oxidizer and the oxidant ratios were also investigated . The results indicated that the temperature had an impact on the removal efficiency of cyclohexylamine. The maximum total organic carbon removal (TOC) in the presence of propylene glycol was achieved with 98% at 525 ºC and the residence time was 14 s.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Takayama, A.G. Renwick, S.L. Johansson, U.P. Thorgeirsson, M. Tsutsumi, D.W. Dalgard and S.M. Sieber, Toxicol. Sci., 53, 33 (2000); https://doi.org/10.1093/toxsci/53.1.33
- Y. Shen, D. Yan, X. Chi, Y. Yang, D.J. Leak and N. Zhou, World J. Microbiol. Biotechnol., 24, 1623 (2008); https://doi.org/10.1007/s11274-007-9651-9
- H. Zhou, Z. Han, T. Fang, Y. Chen, S. Ning, Y. Gan and D. Yan, Front. Microbiol., 9, 2848 (2018); https://doi.org/10.3389/fmicb.2018.02848
- J. Guolin and L. Mingming, Recent Patents Chem. Eng., 4, 29 (2011); https://doi.org/10.2174/2211334711104010029
- B. Veriansyah and J.-D. Kim, J. Environ. Sci. (China), 19, 513 (2007); https://doi.org/10.1016/s1001-0742(07)60086-2
- E. Adar, M. Ince and M.S. Bilgili, Desalin. Water Treat., 161, 243 (2019); https://doi.org/10.5004/dwt.2019.24297
- V. Vadillo, J. Sánchez-Oneto, J.R. Portela and E.J.M. de la Ossa, Ind. Eng. Chem. Res., 52, 7617 (2013); https://doi.org/10.1021/ie400156c
- A. Leybros, A. Roubaud, P. Guichardon and O. Boutin, Process Saf. Environ. Prot., 88, 213 (2010); https://doi.org/10.1016/j.psep.2009.11.001
- V. Vadillo, M.B. García-Jarana, J. Sánchez-Oneto, J.R. Portela and E.J.M. de la Ossa, J. Supercrit. Fluids, 72, 263 (2012); https://doi.org/10.1016/j.supflu.2012.09.011
- Y. Zhao, Q. Zhou, K. Hidetoshi and L. Luo, Ecotoxicol. Environ. Saf., 208, 111596 (2021); https://doi.org/10.1016/j.ecoenv.2020.111596
- P. Cabeza, M.D. Bermejo, C. Jiménez and M.J. Cocero, Water Res., 45, 2485 (2011); https://doi.org/10.1016/j.watres.2011.01.029
- M.J. Cocero, E. Alonso, R. Torío, D. Vallelado and F. Fdz-Polanco, Ind. Eng. Chem. Res., 39, 3709 (2000); https://doi.org/10.1021/ie990852b
- W.R. Killilea, K. Swallow and G.T. Hong, J. Supercrit. Fluids, 5, 72 (1992); https://doi.org/10.1016/0896-8446(92)90044-K
- C. Aymonier, P. Beslin, C. Jolivalt and F. Cansell, J. Supercrit. Fluids, 17, 45 (2000); https://doi.org/10.1016/S0896-8446(99)00040-6
- K.M. Benjamin and P.E. Savage, Ind. Eng. Chem. Res., 44, 5318 (2005); https://doi.org/10.1021/ie0491793
- H. Schmieder and J. Abeln, Chem. Eng. Technol., 22, 903 (1999);
- J. Li, S. Wang, L. Qian, J. Zhang, T. Xu, Y. Li and D. Xu, Chemosphere, 307, 135858 (2022); https://doi.org/10.1016/j.chemosphere.2022.135858
- P. Cabeza, B. Al-Duri, M. Bermejo and M. Cocero, Chem. Eng. Res. Des., 92, 2568 (2014); https://doi.org/10.1016/j.cherd.2014.01.017
- T. Oe, H. Suzugaki, I. Naruse, A.T. Quitain, H. Daimon and K. Fujie, Ind. Eng. Chem. Res., 46, 3566 (2007); https://doi.org/10.1021/ie070168u
- J.M. Ploeger, M.A. Mock and J.W. Tester, AIChE J., 53, 941 (2007); https://doi.org/10.1002/aic.11127
- P.E. Savage, J. Rovira, N. Stylski and C.J. Martino, J. Supercrit. Fluids, 17, 155 (2000); https://doi.org/10.1016/S0896-8446(99)00052-2
- B. Yang, Z. Cheng, T. Yuan and Z. Shen, J. Supercrit. Fluids, 138, 56 (2018); https://doi.org/10.1016/j.supflu.2018.03.021
- J. Zhang, S. Wang, Y. Guo, D. Xu, X. Li and X. Tang, Ind. Eng. Chem. Res., 52, 10609 (2013); https://doi.org/10.1021/ie400704f
- F. Civan, D.H. Özaltun, E. Kipçak and M. Akgün, J. Supercrit. Fluids, 100, 7 (2015); https://doi.org/10.1016/j.supflu.2015.02.018
- Z. Ding, L.X. Li, D. Wade and E. Gloyna, Ind. Eng. Chem. Res., 37, 1707 (1998); https://doi.org/10.1021/ie9709345
- B. Yang, Z. Cheng, M. Fan, J. Jia, T. Yuan and Z. Shen, Chemosphere, 205, 426 (2018); https://doi.org/10.1016/j.chemosphere.2018.04.029
- G. Zhang and I. Hua, Ind. Eng. Chem. Res., 42, 285 (2003); https://doi.org/10.1021/ie010479j
- B. Al-Duri, L. Pinto, N.H. Ashraf-Ball and R.C.D. Santos, J. Mater. Sci., 43, 1421 (2008); https://doi.org/10.1007/s10853-007-2285-3
- G. Lin, D. Xu, Z. Ma, S. Wang and Y. Guo, Energy Procedia, 107, 357 (2017); https://doi.org/10.1016/j.egypro.2016.12.176
- B. Al-Duri, F. Alsoqyani and I. Kings, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 373, 20150013 (2015); https://doi.org/10.1098/rsta.2015.0013
- P.A. Webley, J.W. Tester and H.R. Holgate, Ind. Eng. Chem. Res., 30, 1745 (1991); https://doi.org/10.1021/ie00056a010
- E. Shimoda, T. Fujii, R. Hayashi and Y. Oshima, J. Supercrit. Fluids, 116, 232 (2016); https://doi.org/10.1016/j.supflu.2016.05.052
- M. Bermejo, M. Cocero and F. Fernández-Polanco, Fuel, 83, 195 (2004); https://doi.org/10.1016/S0016-2361(03)00256-4
- M. Cocero, E. Alonso, M. Sanz and F. Fdz-Polanco, J. Supercrit. Fluids, 24, 37 (2002); https://doi.org/10.1016/S0896-8446(02)00011-6
- B. Al-Duri, F. Alsoqyiani and I. Kings, J. Supercrit. Fluids, 116, 155 (2016); https://doi.org/10.1016/j.supflu.2016.05.002
- N. Segond, Y. Matsumura and K. Yamamoto, Ind. Eng. Chem. Res., 41, 6020 (2002); https://doi.org/10.1021/ie0106682
- L.D.S. Pinto, L.M.F. dos Santos, B. Al-Duri and R.C.D. Santos, J. Chem. Technol. Biotechnol., 81, 912 (2006); https://doi.org/10.1002/jctb.1420
References
S. Takayama, A.G. Renwick, S.L. Johansson, U.P. Thorgeirsson, M. Tsutsumi, D.W. Dalgard and S.M. Sieber, Toxicol. Sci., 53, 33 (2000); https://doi.org/10.1093/toxsci/53.1.33
Y. Shen, D. Yan, X. Chi, Y. Yang, D.J. Leak and N. Zhou, World J. Microbiol. Biotechnol., 24, 1623 (2008); https://doi.org/10.1007/s11274-007-9651-9
H. Zhou, Z. Han, T. Fang, Y. Chen, S. Ning, Y. Gan and D. Yan, Front. Microbiol., 9, 2848 (2018); https://doi.org/10.3389/fmicb.2018.02848
J. Guolin and L. Mingming, Recent Patents Chem. Eng., 4, 29 (2011); https://doi.org/10.2174/2211334711104010029
B. Veriansyah and J.-D. Kim, J. Environ. Sci. (China), 19, 513 (2007); https://doi.org/10.1016/s1001-0742(07)60086-2
E. Adar, M. Ince and M.S. Bilgili, Desalin. Water Treat., 161, 243 (2019); https://doi.org/10.5004/dwt.2019.24297
V. Vadillo, J. Sánchez-Oneto, J.R. Portela and E.J.M. de la Ossa, Ind. Eng. Chem. Res., 52, 7617 (2013); https://doi.org/10.1021/ie400156c
A. Leybros, A. Roubaud, P. Guichardon and O. Boutin, Process Saf. Environ. Prot., 88, 213 (2010); https://doi.org/10.1016/j.psep.2009.11.001
V. Vadillo, M.B. García-Jarana, J. Sánchez-Oneto, J.R. Portela and E.J.M. de la Ossa, J. Supercrit. Fluids, 72, 263 (2012); https://doi.org/10.1016/j.supflu.2012.09.011
Y. Zhao, Q. Zhou, K. Hidetoshi and L. Luo, Ecotoxicol. Environ. Saf., 208, 111596 (2021); https://doi.org/10.1016/j.ecoenv.2020.111596
P. Cabeza, M.D. Bermejo, C. Jiménez and M.J. Cocero, Water Res., 45, 2485 (2011); https://doi.org/10.1016/j.watres.2011.01.029
M.J. Cocero, E. Alonso, R. Torío, D. Vallelado and F. Fdz-Polanco, Ind. Eng. Chem. Res., 39, 3709 (2000); https://doi.org/10.1021/ie990852b
W.R. Killilea, K. Swallow and G.T. Hong, J. Supercrit. Fluids, 5, 72 (1992); https://doi.org/10.1016/0896-8446(92)90044-K
C. Aymonier, P. Beslin, C. Jolivalt and F. Cansell, J. Supercrit. Fluids, 17, 45 (2000); https://doi.org/10.1016/S0896-8446(99)00040-6
K.M. Benjamin and P.E. Savage, Ind. Eng. Chem. Res., 44, 5318 (2005); https://doi.org/10.1021/ie0491793
H. Schmieder and J. Abeln, Chem. Eng. Technol., 22, 903 (1999);
J. Li, S. Wang, L. Qian, J. Zhang, T. Xu, Y. Li and D. Xu, Chemosphere, 307, 135858 (2022); https://doi.org/10.1016/j.chemosphere.2022.135858
P. Cabeza, B. Al-Duri, M. Bermejo and M. Cocero, Chem. Eng. Res. Des., 92, 2568 (2014); https://doi.org/10.1016/j.cherd.2014.01.017
T. Oe, H. Suzugaki, I. Naruse, A.T. Quitain, H. Daimon and K. Fujie, Ind. Eng. Chem. Res., 46, 3566 (2007); https://doi.org/10.1021/ie070168u
J.M. Ploeger, M.A. Mock and J.W. Tester, AIChE J., 53, 941 (2007); https://doi.org/10.1002/aic.11127
P.E. Savage, J. Rovira, N. Stylski and C.J. Martino, J. Supercrit. Fluids, 17, 155 (2000); https://doi.org/10.1016/S0896-8446(99)00052-2
B. Yang, Z. Cheng, T. Yuan and Z. Shen, J. Supercrit. Fluids, 138, 56 (2018); https://doi.org/10.1016/j.supflu.2018.03.021
J. Zhang, S. Wang, Y. Guo, D. Xu, X. Li and X. Tang, Ind. Eng. Chem. Res., 52, 10609 (2013); https://doi.org/10.1021/ie400704f
F. Civan, D.H. Özaltun, E. Kipçak and M. Akgün, J. Supercrit. Fluids, 100, 7 (2015); https://doi.org/10.1016/j.supflu.2015.02.018
Z. Ding, L.X. Li, D. Wade and E. Gloyna, Ind. Eng. Chem. Res., 37, 1707 (1998); https://doi.org/10.1021/ie9709345
B. Yang, Z. Cheng, M. Fan, J. Jia, T. Yuan and Z. Shen, Chemosphere, 205, 426 (2018); https://doi.org/10.1016/j.chemosphere.2018.04.029
G. Zhang and I. Hua, Ind. Eng. Chem. Res., 42, 285 (2003); https://doi.org/10.1021/ie010479j
B. Al-Duri, L. Pinto, N.H. Ashraf-Ball and R.C.D. Santos, J. Mater. Sci., 43, 1421 (2008); https://doi.org/10.1007/s10853-007-2285-3
G. Lin, D. Xu, Z. Ma, S. Wang and Y. Guo, Energy Procedia, 107, 357 (2017); https://doi.org/10.1016/j.egypro.2016.12.176
B. Al-Duri, F. Alsoqyani and I. Kings, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 373, 20150013 (2015); https://doi.org/10.1098/rsta.2015.0013
P.A. Webley, J.W. Tester and H.R. Holgate, Ind. Eng. Chem. Res., 30, 1745 (1991); https://doi.org/10.1021/ie00056a010
E. Shimoda, T. Fujii, R. Hayashi and Y. Oshima, J. Supercrit. Fluids, 116, 232 (2016); https://doi.org/10.1016/j.supflu.2016.05.052
M. Bermejo, M. Cocero and F. Fernández-Polanco, Fuel, 83, 195 (2004); https://doi.org/10.1016/S0016-2361(03)00256-4
M. Cocero, E. Alonso, M. Sanz and F. Fdz-Polanco, J. Supercrit. Fluids, 24, 37 (2002); https://doi.org/10.1016/S0896-8446(02)00011-6
B. Al-Duri, F. Alsoqyiani and I. Kings, J. Supercrit. Fluids, 116, 155 (2016); https://doi.org/10.1016/j.supflu.2016.05.002
N. Segond, Y. Matsumura and K. Yamamoto, Ind. Eng. Chem. Res., 41, 6020 (2002); https://doi.org/10.1021/ie0106682
L.D.S. Pinto, L.M.F. dos Santos, B. Al-Duri and R.C.D. Santos, J. Chem. Technol. Biotechnol., 81, 912 (2006); https://doi.org/10.1002/jctb.1420