Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics of Pd(II)-Catalyzed Oxidation of Ampicillin by Using Cu(Bipy)22+ as Oxidant in Alkaline Medium: A Spectrophotometric Study
Corresponding Author(s) : Shahla Rahmani
Asian Journal of Chemistry,
Vol. 34 No. 10 (2022): Vol 34 Issue 10, 2022
Abstract
The kinetic and mechanistic study of homogeneously Pd(II)-catalyzed oxidation of ampicillin by Cu(Bipy)22+ in alkaline medium have been conducted at 35 ± 0.1 ºC. Spectrophotometric titrations show that the stoichiometry of the reaction is 1:4 ([ampicillin]:[Cu(Bipy)22+] = 1:4). The first order kinetics is observed regarding [Cu(Bipy)22+] and [Pd(II)] however, less than unity order exhibited by [OH–]. On varying [ampicillin] and [bipyridyl], velocity of reaction remains unchanged. Reaction rate unaffected by changing ionic strength of the medium while with dielectric constant, it shows inverse relation. Various thermodynamic properties of reaction were calculated such as activation energy, activation entropy, etc. Oxophenyl acetic acid and 2-formyl-5,5-dimethylthiazolidine-4-carboxylic acid were identified as reaction product. With the help of kinetic observation, spectrophotometric data an appropriate reaction mechanism and rate law derived for aforesaid reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.S. Satoskar and S.D. Bhandarkar, Pharmacology and Pharmacotherapeutics, Popular Prakashan: Bombay, Ed. 11., vol. II (1990).
- L.J. Ming, Med. Res. Rev., 23, 697 (2003); https://doi.org/10.1002/med.10052
- A.K. Singh, M. Singh, S. Rahmani, J. Srivastava and J. Singh, Ind. Eng. Chem. Res., 51, 5728 (2012); https://doi.org/10.1021/ie300306a
- S.S. Badi and S.M. Tuwar, Arab. J. Chem., 10, 1469 (2017); https://doi.org/10.1016/j.arabjc.2013.04.025
- A.P. Khan, A. Khan, A.M. Asiri and S.A. Khan, J. Mol. Liq., 218, 604 (2016); https://doi.org/10.1016/j.molliq.2016.02.051
- M.S. Veena, M.K. Prashanth, Y. Kumar, H.B. Muralidhara and Y.A. Nayaka, J. Chil. Chem. Soc., 60, 3063 (2015); https://doi.org/10.4067/S0717-97072015000300019
- A.E.M. Abdel-Hady and A.M. Taha, Transition Met. Chem., 40, 379 (2015); https://doi.org/10.1007/s11243-015-9927-0
- A.K. Durgannavar, M.B. Patgar and S.A. Chimatadar, Indian J. Chem., 54A, 1085 (2015).
- J.A. Klaus, T.M. Brooks, M. Zhou, A.J. Veinot, A.M. Warman, A. Palayew, P.T. Gormley, B. Ninh Khuong, C.M. Vogels, J.D. Masuda, F.J. Baerlocher and S.A. Westcott, Transition Met. Chem., 42, 263 (2017); https://doi.org/10.1007/s11243-017-0130-3
- S. Prince, S. Mapolie and A. Blanckenberg, Encyclopedia of Cancer, pp. 1-9 (2015).
- S. Ray, R. Mohan, J.K. Singh, M.K. Samantaray, M.M. Shaikh, D. Panda and P. Ghosh, J. Am. Chem. Soc., 129, 15042 (2007); https://doi.org/10.1021/ja075889z
- A.R. Kapdi and I.J.S. Fairlamb, Chem. Soc. Rev., 43, 4751 (2014); https://doi.org/10.1039/C4CS00063C
- E. Prenesti, P.G. Daniele, S. Berto and S. Toso, Polyhedron, 25, 2815 (2006); https://doi.org/10.1016/j.poly.2006.04.026
- P.M. Henry, Palladium Catalyzed Oxidation of Hydrocarbons, D. Reidel Publishing Company, Dordrecht, Holland, pp. 11-12 (1928).
- A.A. Biryukov and V.A. Schlenskaya, Russ. J. Inorg. Chem., 9, 450 (1964).
- K. Burger, D. Dyrssen, L. Johansson, B. Norén and J. Munch-Petersen, Acta Chem. Scand., 17, 1489 (1963); https://doi.org/10.3891/acta.chem.scand.17-1489
- H.A. Droll, B.P. Block and W.G. Fernelius, J. Phys. Chem., 61, 1000 (1957); https://doi.org/10.1021/j150553a036
- A.A. Grinberg and N.V. Kiseleva, Dokl. Acad. Nauk. SSSR, 153, 1327 (1963).
- E.D. Weed, Diss. Abstr., 25, 795 (1964).
- L.I. Elding, Inorg. Chim. Acta, 6, 647 (1972); https://doi.org/10.1016/S0020-1693(00)91874-7
- G.H. Ayres, Anal. Chem., 25, 1622 (1953); https://doi.org/10.1021/ac60083a013
- A.K. Singh, S. Yadav, R. Srivastava, J. Srivastava and S. Rahmani, J. Organomet. Chem., 695, 2213 (2010); https://doi.org/10.1016/j.jorganchem.2010.06.009
- P. Job, Ann. Chim. (Paris), 10(9), 113 (1928).
- P. Job, Ann. Chim. (Paris), 11(6), 97 (1936).
- A.K. Singh, R. Negi, B. Jain, Y. Katre, S.P. Singh and V.K. Sharma, Ind. Eng. Chem. Res., 50, 8407 (2011); https://doi.org/10.1021/ie101661m
References
R.S. Satoskar and S.D. Bhandarkar, Pharmacology and Pharmacotherapeutics, Popular Prakashan: Bombay, Ed. 11., vol. II (1990).
L.J. Ming, Med. Res. Rev., 23, 697 (2003); https://doi.org/10.1002/med.10052
A.K. Singh, M. Singh, S. Rahmani, J. Srivastava and J. Singh, Ind. Eng. Chem. Res., 51, 5728 (2012); https://doi.org/10.1021/ie300306a
S.S. Badi and S.M. Tuwar, Arab. J. Chem., 10, 1469 (2017); https://doi.org/10.1016/j.arabjc.2013.04.025
A.P. Khan, A. Khan, A.M. Asiri and S.A. Khan, J. Mol. Liq., 218, 604 (2016); https://doi.org/10.1016/j.molliq.2016.02.051
M.S. Veena, M.K. Prashanth, Y. Kumar, H.B. Muralidhara and Y.A. Nayaka, J. Chil. Chem. Soc., 60, 3063 (2015); https://doi.org/10.4067/S0717-97072015000300019
A.E.M. Abdel-Hady and A.M. Taha, Transition Met. Chem., 40, 379 (2015); https://doi.org/10.1007/s11243-015-9927-0
A.K. Durgannavar, M.B. Patgar and S.A. Chimatadar, Indian J. Chem., 54A, 1085 (2015).
J.A. Klaus, T.M. Brooks, M. Zhou, A.J. Veinot, A.M. Warman, A. Palayew, P.T. Gormley, B. Ninh Khuong, C.M. Vogels, J.D. Masuda, F.J. Baerlocher and S.A. Westcott, Transition Met. Chem., 42, 263 (2017); https://doi.org/10.1007/s11243-017-0130-3
S. Prince, S. Mapolie and A. Blanckenberg, Encyclopedia of Cancer, pp. 1-9 (2015).
S. Ray, R. Mohan, J.K. Singh, M.K. Samantaray, M.M. Shaikh, D. Panda and P. Ghosh, J. Am. Chem. Soc., 129, 15042 (2007); https://doi.org/10.1021/ja075889z
A.R. Kapdi and I.J.S. Fairlamb, Chem. Soc. Rev., 43, 4751 (2014); https://doi.org/10.1039/C4CS00063C
E. Prenesti, P.G. Daniele, S. Berto and S. Toso, Polyhedron, 25, 2815 (2006); https://doi.org/10.1016/j.poly.2006.04.026
P.M. Henry, Palladium Catalyzed Oxidation of Hydrocarbons, D. Reidel Publishing Company, Dordrecht, Holland, pp. 11-12 (1928).
A.A. Biryukov and V.A. Schlenskaya, Russ. J. Inorg. Chem., 9, 450 (1964).
K. Burger, D. Dyrssen, L. Johansson, B. Norén and J. Munch-Petersen, Acta Chem. Scand., 17, 1489 (1963); https://doi.org/10.3891/acta.chem.scand.17-1489
H.A. Droll, B.P. Block and W.G. Fernelius, J. Phys. Chem., 61, 1000 (1957); https://doi.org/10.1021/j150553a036
A.A. Grinberg and N.V. Kiseleva, Dokl. Acad. Nauk. SSSR, 153, 1327 (1963).
E.D. Weed, Diss. Abstr., 25, 795 (1964).
L.I. Elding, Inorg. Chim. Acta, 6, 647 (1972); https://doi.org/10.1016/S0020-1693(00)91874-7
G.H. Ayres, Anal. Chem., 25, 1622 (1953); https://doi.org/10.1021/ac60083a013
A.K. Singh, S. Yadav, R. Srivastava, J. Srivastava and S. Rahmani, J. Organomet. Chem., 695, 2213 (2010); https://doi.org/10.1016/j.jorganchem.2010.06.009
P. Job, Ann. Chim. (Paris), 10(9), 113 (1928).
P. Job, Ann. Chim. (Paris), 11(6), 97 (1936).
A.K. Singh, R. Negi, B. Jain, Y. Katre, S.P. Singh and V.K. Sharma, Ind. Eng. Chem. Res., 50, 8407 (2011); https://doi.org/10.1021/ie101661m