Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Comprehensive Review on Green Synthetic Approaches and Applications of 3d-Series Metal Oxide Nanoparticles
Corresponding Author(s) : P. Lakshmi Kishore
Asian Journal of Chemistry,
Vol. 34 No. 10 (2022): Vol 34 Issue 10, 2022
Abstract
Transition metal oxides have been studied by many workers of fields who want to find new ways to use them in medical devices and other fields. Researchers have done a lot of research on solid-state synthesis methods, which require high temperatures and make molecules that are thermodynamically stable. Transition metal oxides have been used for a wide range of things, from nanoparticles that deliver drugs to systems that store information in more than one state. In materials science and technology research and development, a new era of “green synthesis” methods is getting a great attention. Basically, green synthesis of materials and nanomaterials, which is done through a process of regulation, control, cleaning and remediation, will directly help make them more friendly to the environment. In this review, various green approaches for 3d-series metal oxide nanoparticles and their applications are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.S. Wong and U. Schwaneberg, Curr. Opin. Biotechnol., 14, 590 (2003); https://doi.org/10.1016/j.copbio.2003.09.008
- A. Ramanavicius, A. Kausaite and A. Ramanaviciene, Biosens. Bioelectron., 20, 1962 (2005); https://doi.org/10.1016/j.bios.2004.08.032
- M.A.E. Aleem Ali El-Remaily, A.M. Abu-Dief and R.M. El-Khatib, Appl. Organomet. Chem., 30, 1022 (2016); https://doi.org/10.1002/aoc.3536
- L.H. Abdel-Rahman, A.M. Abu-Dief, R.M. El-Khatib and S.M. AbdelFatah, Bioorg. Chem., 69, 140 (2016); https://doi.org/10.1016/j.bioorg.2016.10.009
- A.M. Abu-Dief and W.S. Mohamed, Mater. Res. Express, 4, 035039 (2017); https://doi.org/10.1088/2053-1591/aa6712
- E.M.M. Ibrahim, L.H. Abdel-Rahman, A.M. Abu-Dief, A. Elshafaie, S.K. Hamdan and A.M. Ahmed, Mater. Res. Bull., 99, 103 (2018); https://doi.org/10.1016/j.materresbull.2017.11.002
- A.A. Marzouk, A.M. Abu-Dief and A.A. Abdelhamid, Appl. Organomet. Chem., 32, 3794 (2018); https://doi.org/10.1002/aoc.3794
- F. Buazar, M. Bavi, F. Kroushawi, M. Halvani, A. Khaledi-Nasab and S.A. Hossieni, J. Exp. Nanosci., 11, 175 (2016); https://doi.org/10.1080/17458080.2015.1039610
- A.M. Awwad, B.A. Albiss and N.M. Salem, SMU Med. J., 2, 91 (2015).
- M. Nasrollahzadeh, F. Ghorbannezhad, Z. Issaabadi and S.M. Sajadi, Chem. Rec., 19, 601 (2019); https://doi.org/10.1002/tcr.201800069
- M. Nasrollahzadeh, S. Mahmoudi-Gom Yek, N. Motahharifar and M. Ghafori Gorab, Chem. Rec., 19, 2436 (2019); https://doi.org/10.1002/tcr.201800202
- M. Ahangari, Z. Salouti, A.R. Heidari, A.A. Kazemizadeh and A.A. Safari, Drug Deliv., 20, 34 (2013); https://doi.org/10.3109/10717544.2012.746402
- S.A. Wolf, D.D. Awschalom, R.aA. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chtchelkanova and D.M. Treger, Science, 294, 1488 (2001); https://doi.org/10.1126/science.1065389
- J.B. Gruber, M.E. Hills, M.D. Seltzer, S.B. Stevens and C.A. Morrison, J. Appl. Phys., 72, 5253 (1992); https://doi.org/10.1063/1.352008
- S.D. Birmingham, Am. Ceram. Soc. Bull., 73, 121 (1994).
- D.-S. Cheong and W.A. Sanders, J. Am. Ceram. Soc., 75, 3331 (1992); https://doi.org/10.1111/j.1151-2916.1992.tb04429.x
- N. Imanaka, S. Banno and G. Adachi, Chem. Lett., 23, 319 (1994); https://doi.org/10.1246/cl.1994.319
- K. Wojtera, Pol. J. Chem., 57, 947 (1983).
- J. Fierro, S. Mendioroz and J. Sanz, Colloid Surf. Sci, 93, 487 (1983); https://doi.org/10.1016/0021-9797(83)90432-0
- I. Ladany, P.J. Zanzucchi, J.T. Andrews, J. Kane and E. DePiano, Appl. Opt., 25, 472 (1986); https://doi.org/10.1364/AO.25.000472
- M. Nasrollahzadeh and S. Mohammad Sajadi, J. Colloid Interface Sci., 465, 121 (2016); https://doi.org/10.1016/j.jcis.2015.11.038
- D. Baskar and G. Nallathambi, Mater. Lett., 209, 303 (2017); https://doi.org/10.1016/j.matlet.2017.08.038
- I.-M. Chung, I. Park, K. Seung-Hyun, M. Thiruvengadam and G. Rajakumar, Nanoscale Res. Lett., 11, 40 (2016); https://doi.org/10.1186/s11671-016-1257-4
- A.K.T. Bui, A. Bacic and F. Pettolino, Phytochemistry, 67, 1271 (2006); https://doi.org/10.1016/j.phytochem.2006.04.023
- M. Skocaj, M. Filipic, J. Petkovic and S. Novak, Radiol. Oncol., 45, 227 (2011); https://doi.org/10.2478/v10019-011-0037-0
- P. Ravikumar and S. Sathish Kumar, Int. J. Technol. Res. Appl., 2, 108 (2014).
- L. Inbathamizh, T.M. Ponnu and E.J. Mary, J. Pharm. Res., 6, 32 (2013); https://doi.org/10.1016/j.jopr.2012.11.010
- M.A. Zoubi, H.K. Farag and F. Endres, J. Mater. Sci., 44, 1363 (2009); https://doi.org/10.1007/s10853-008-3004-4
- N. Asim, S. Radiman, M.A. Yarmo and M.S. Banaye Golriz, Micropor. Mesopor. Mater., 120, 397 (2009); https://doi.org/10.1016/j.micromeso.2008.12.013
- S. Kobayashi, T. Takemura and F. Kaneko, Jpn. J. Appl. Phys., 26, L1274 (1987); https://doi.org/10.1143/JJAP.26.L1274
- Y. Fujita, K. Miyazaki and C. Tatsuyama, Jpn. J. Appl. Phys., 24, 1082 (1985); https://doi.org/10.1143/JJAP.24.1082
- D. Wruck, S. Ramamurthi and M. Rubin, Thin Solid Films, 182, 79 (1989); https://doi.org/10.1016/0040-6090(89)90245-9
- B.B. Lakshmi, C.J. Patrissi and C.R. Martin, Chem. Mater., 9, 2544 (1997); https://doi.org/10.1021/cm970268y
- B. Alonso and J. Livage, J. Solid State Chem., 148, 16 (1999); https://doi.org/10.1006/jssc.1999.8283
- A.B. Sifontes, G. González, L.M. Tovar, F.J. Méndez, M.E. Gomes, E. Cañizales, G. Niño-Vega, H. Villalobos and J.L. Brito, Mater. Res. Bull., 48, 730 (2013); https://doi.org/10.1016/j.materresbull.2012.11.016
- W. He, Z. Li, Y. Wang, X. Chen, X. Zhang, H. Zhao, S. Yan and W. Zhou, J. Mater. Sci. Mater. Med., 21, 155 (2010); https://doi.org/10.1007/s10856-009-3865-3
- D. Li, C. Tong, W. Ji, Z. Fu, Z. Wan, Q. Huang, Y. Ming, A. Mei, Y. Hu, Y. Rong and H. Han, ACS Sustain. Chem. & Eng., 7, 2619 (2019); https://doi.org/10.1021/acssuschemeng.8b05653
- A.K. Prasad, S. Dhara and S. Dash, Sens. Lett., 15, 552 (2017); https://doi.org/10.1166/sl.2017.3847
- C. Niu, M. Huang, P. Wang, J. Meng, X. Liu, X. Wang, K. Zhao, Y. Yu, Y. Wu, C. Lin and L. Mai, Nano Res., 9, 128 (2016); https://doi.org/10.1007/s12274-015-0896-6
- R. Berenguer, M.O. Guerrero-Pérez, I. Guzmán, J. Rodríguez-Mirasol and T. Cordero, ACS Omega, 2, 7739 (2017); https://doi.org/10.1021/acsomega.7b01061
- Á. Cunha, J. Martins, N. Rodrigues and F. Brito, Int. J. Energy Res., 39, 889 (2015); https://doi.org/10.1002/er.3260
- R.R. Langeslay, D.M. Kaphan, C.L. Marshall, A.P. Sattelberger, P.C. Stair and M. Delferro, Chem. Rev., 119, 2128 (2019); https://doi.org/10.1021/acs.chemrev.8b00245
- Y. Zhang, J. Zheng, Y. Zhao, T. Hu, Z. Gao and C. Meng, Appl. Surf. Sci., 377, 385 (2016); https://doi.org/10.1016/j.apsusc.2016.03.180
- W. Jin, B. Dong, W. Chen, C. Zhao, L. Mai and Y. Dai, Sens. Actuators B Chem., 145, 211 (2010); https://doi.org/10.1016/j.snb.2009.11.059.
- X. Yang, X. Peng, C. Xu and F. Wang, J. Electrochem. Soc., 156, C167 (2009); https://doi.org/10.1149/1.3082378
- M. Ludwig, E. Sniezek, I. Jastrzebska, R. Prorok, Y. Li, N. Liao, M. Nath, J. Vlcek and J. Szczerba, Materials, 15, 725 (2022); https://doi.org/10.3390/ma15030725
- J.-Y. Hwang and D.-S. Seo, J. Electrochem. Soc., 157, J351 (2010); https://doi.org/10.1149/1.3473785
- M. Freemantle, Chemical Eng News Archive, 76, 8 (1998); https://doi.org/10.1021/cen-v076n006.p008
- J.I. Fasick, N. Lee and D.D. Oprian, Biochemistry, 38, 11593 (1999); https://doi.org/10.1021/bi991600h
- H. Rotter, M.V. Landau, M. Carrera, D. Goldfarb and M. Herskowitz, Appl. Catal. B, 47, 111 (2004); https://doi.org/10.1016/j.apcatb.2003.08.006
- H. Rotter, M.V. Landau and M. Herskowitz, Environ. Sci. Technol., 39, 6845 (2005); https://doi.org/10.1021/es0500052
- L. Chen, Z. Song, X. Wang, S.V. Prikhodko, J. Hu, S. Kodambaka and R. Richards, Appl. Mater. Interf., 1, 1931 (2009); https://doi.org/10.1021/am900334q
- Y.-L. Bai, H.-B. Xu, Y. Zhang and Z.-H. Li, J. Phys. Chem. Solids, 67, 2589 (2006); https://doi.org/10.1016/j.jpcs.2006.07.018
- A.C. Santulli, M. Feygenson, F.E. Camino, M.C. Aronson and S.S. Wong, Chem. Mater., 23, 1000 (2011); https://doi.org/10.1021/cm102930z
- D,-W. Kim, S.-I. Shin, J.-D. Lee and S.-G. Oh, Mater. Lett., 58, 189 (2004); https://doi.org/10.1016/j.matlet.2003.11.023
- A.A. Ali, M. Madkour, F. Al Sagheer, M.I. Zaki and A.A. Nazeer, Catalysts, 10, 105 (2020); https://doi.org/10.3390/catal10010105
- T.M. Al-Saadi and N.A. Hameed, Adv. Phys. Theor. Appl., 44, 139 (2015).
- P. Li, H.B. Xu, Y. Zhang, Z.H. Li, S.L. Zheng and Y.L. Bai, Dyes Pigm., 80, 287 (2009); https://doi.org/10.1016/j.dyepig.2008.07.016
- T.V. Rao, Y. Yang and A. Sayari, J. Mol. Catal. Chem., 301, 152 (2009); https://doi.org/10.1016/j.molcata.2008.12.026
- G. Wang, L. Zhang, J. Deng, H. Dai, H. He and C.T. Au, Appl. Catal. A, 355, 192 (2009); https://doi.org/10.1016/j.apcata.2008.12.020
- X. Pang, K. Gao, F. Luo, Y. Emirov, A.A. Levin and A.A. Volinsky, Thin Solid Films, 517, 1922 (2009); https://doi.org/10.1016/j.tsf.2008.10.026
- X. Hou and K.L. Choy, Thin Solid Films, 516, 8620 (2008); https://doi.org/10.1016/j.tsf.2008.06.045
- M. Abecassis-Wolfovich, H. Rotter, M.V. Landau, E. Korin, A.I. Erenburg, D. Mogilyansky and E. Garshtein, Stud. Surf. Sci. Catal., 146, 247 (2003); https://doi.org/10.1016/S0167-2991(03)80373-7
- C.L. Li, H.X. Zhao, T. Takahashi and M. Matsumura, Mater. Sci. Eng. A, 308, 268 (2001); https://doi.org/10.1016/S0921-5093(00)01976-6
- M.V. Landau, G.E. Shter, L. Titelman, V. Gelman, H. Rotter, G.S. Grader and M. Herskowitz, Ind. Eng. Chem. Res., 45, 7462 (2006); https://doi.org/10.1021/ie0606744
- Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y. Chen and S.L. Suib, J. Am. Chem. Soc., 136, 11452 (2014); https://doi.org/10.1021/ja505186m
- C. Wei, L. Yu, C. Cui, J. Lin, C. Wei, N. Mathews, F. Huo, T. Sritharan and Z. Xu, Chem. Commun., 50, 7885 (2014); https://doi.org/10.1039/c4cc02781g
- Y. Lvov, B. Munge, O. Giraldo, I. Ichinose, S.L. Suib and J.F. Rusling, Langmuir, 16, 8850 (2000); https://doi.org/10.1021/la000110j
- X.-L. Luo, J.-J. Xu, W. Zhao and H.-Y. Chen, Biosens. Bioelectron., 19, 1295 (2004); https://doi.org/10.1016/j.bios.2003.11.019
- M. Wayu, Solids, 2, 232 ( 2021); https://doi.org/10.3390/solids2020015
- A. Asfaram, M. Ghaedi, S. Hajati and A. Goudarzi, RSC Adv., 5, 72300 (2015); https://doi.org/10.1039/C5RA10815B
- T.A. Abdullah, R.T. Rasheed, T. Juzsakova, N. Al-Jammal, M.A. Mallah, L.P. Cuong, A.D. Salman, E. Domokos, Z. Ali and I. Cretescu, Int. J. Environ. Sci. Technol., 18, 1499 (2021); https://doi.org/10.1007/s13762-020-02956-x
- E. Moazzen, K. Kucuk, S. Aryal, E.V. Timofeeva and C.U. Segre, J. Power Sources, 448, 227374 (2020); https://doi.org/10.1016/j.jpowsour.2019.227374
- S. Nazir, H. Jan, G. Zaman, T. Khan, H. Ashraf, B. Meer, M. Zia, S. Drouet, C. Hano and B.H. Abbasi, Artif. Cells, Nanomed. Biotechnol., 49, 625 (2021); https://doi.org/10.1080/21691401.2021.1984935
- T. Li, T. Shi, X. Li, S. Zeng, L. Yin and Y. Pu, Int. J. Environ. Res. Public Health, 11, 7918 (2014); https://doi.org/10.3390/ijerph110807918
- M.M. Najafpour, F. Rahimi, E.-M. Aro, S.I. Allakhverdiev and C.-H. Lee, J. R. Soc. Interface, 9, 2383 (2012); https://doi.org/10.1098/rsif.2012.0412
- D. Van-Phuc, L. Ngoc-Chung and N. Ngoc-Tuan, Removal of Copper(II) From Aqueous Solution by Adsorption onto MnO2 Nanostructure: Equilibrium and Kinetic Studies, The 4th Academic Conference on Natural Science for Young Scientists, Master & Phd Students from Asean Countries, pp. 57-64 (2015).
- A. Bahadur, S. Iqbal, A. Saeed, M.I. Bashir, M. Shoaib, M. Waqas, G. Shabir and A. Jabbar, Chem. Pap., 71, 1445 (2017); https://doi.org/10.1007/s11696-017-0138-3
- D.L. Huber, Small, 1, 482 (2005); https://doi.org/10.1002/smll.200500006
- R.M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, Ed.: 2 (2006).
- S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R.N. Muller, Chem. Rev., 108, 2064 (2008); https://doi.org/10.1021/cr068445e
- A.S. Teja and P.-Y. Koh, Prog. Cryst. Growth Charact. Mater., 55, 22 (2009); https://doi.org/10.1016/j.pcrysgrow.2008.08.003
- M. De Cuyper and M. Joniau, Eur. Biophys. J., 15, 311 (1988); https://doi.org/10.1007/BF00256482
- S. Hasany, I. Ahmed, J. Rajan and A. Rehman, Nanosci. Nanotechnol., 2, 148 (2012); https://doi.org/10.5923/j.nn.20120206.01
- Y. Cai, Y. Shen, A. Xie, S. Li and X. Wang, J. Magn. Magn. Mater., 322, 2938 (2010); https://doi.org/10.1016/j.jmmm.2010.05.009
- N. Latha and M. Gowri, Int. J. Scient. Res., 3, 1551 (2014).
- V.V. Makarov, S.S. Makarova, A.J. Love, O.V. Sinitsyna, A.O. Dudnik, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Langmuir, 30, 5982 (2014); https://doi.org/10.1021/la5011924
- S. Venkateswarlu, B.N. Kumar, B. Prathima, K. Anitha and N.V.V. Jyothi, Phys B., 457, 30 (2015); https://doi.org/10.1016/j.physb.2014.09.007
- C. Prasad, S. Gangadhara and P. Venkateswarlu, Appl. Nanosci., 6, 797 (2016); https://doi.org/10.1007/s13204-015-0485-8
- V. Niraimathee, V. Subha, R.E. Ravindran and S. Renganathan, Int. J. Environ. Sustain. Dev., 15, 227 (2016); https://doi.org/10.1504/IJESD.2016.077370
- M. Martínez-Cabanas, M. López-García, J.L. Barriada, R. Herrero and M.E. Sastre de Vicente, Chem. Eng. J., 301, 83 (2016); https://doi.org/10.1016/j.cej.2016.04.149
- W.H. Li and N. Yang, Mater. Lett., 162, 157 (2016); https://doi.org/10.1016/j.matlet.2015.09.064
- M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman and J. Amin, Molecules, 18, 7533 (2013); https://doi.org/10.3390/molecules18077533
- J.K. Patra, M.S. Ali, I.G. Oh and K.H. Baek, Artif. Cells Nanomed. Biotechnol., 45, 349 (2017); https://doi.org/10.3109/21691401.2016.1153484
- S. Gil, C.R. Correia and J.F. Mano, Adv. Healthc. Mater., 4, 883 (2015); https://doi.org/10.1002/adhm.201400611
- M.F. Horst, D.F. Coral, M.B. Fernández van Raap, M. Alvarez and V. Lassalle, Mater. Sci. Eng., 74, 443 (2017); https://doi.org/10.1016/j.msec.2016.12.035
- D. Azarifar, O. Badalkhani and Y. Abbasi, J. Sulfur Chem., 37, 656 (2016); https://doi.org/10.1080/17415993.2016.1177055
- K. Hardani, F. Buazar, K. Ghanemi and M. Kashisaz, Am. Assoc. Sci. Technol. J. Nanosci., 1, 11 (2015).
- D. He, L. Li, F. Bai, C. Zha, L. Shen, H.H. Kung and N. Bao, Chem. Eur. J., 22, 4454 (2016); https://doi.org/10.1002/chem.201504429
- W. Sun, S. Mignani, M. Shen and X. Shi, Drug Discov. Today, 21, 1873 (2016); https://doi.org/10.1016/j.drudis.2016.06.028
- J. Li, Y. Hu, J. Yang, P. Wei, W. Sun, M. Shen, G. Zhang and X. Shi, Biomaterials, 38, 10 (2015); https://doi.org/10.1016/j.biomaterials.2014.10.065
- W.M. Liu, Y.N. Xue, N. Peng, W.-T. He, R.-X. Zhuo and S.-W. Huang, J. Mater. Chem., 21, 13306 (2011); https://doi.org/10.1039/c1jm11460c
- H. El Ghandoor, Int. J. Electrochem. Sci., 7, 5734 (2012).
- Y. Sun, J. Li, Y. Wang, C. Ding, Y. Lin, W. Sun and C. Luo, Spectrochim. Acta A Mol. Biomol. Spectrosc., 178, 1 (2017); https://doi.org/10.1016/j.saa.2017.01.057
- W. Lu, M. Ling, M. Jia, P. Huang, C. Li and B. Yan, Mol. Med. Rep., 9, 1080 (2014); https://doi.org/10.3892/mmr.2014.1906
- T. Lai, Y. Lai, C. Lee, Y. Shu and C. Wang, Catal. Today, 131, 105 (2008); https://doi.org/10.1016/j.cattod.2007.10.039
- M. El Baydi, G. Poillerat, J.-L. Rehspringer, J.L. Gautier, J.-F. Koenig and P. Chartier, J. Solid State Chem., 109, 281 (1994); https://doi.org/10.1006/jssc.1994.1105
- S.W. Oh, H.J. Bang, Y.C. Bae and Y.K. Sun, J. Power Sources, 173, 502 (2007); https://doi.org/10.1016/j.jpowsour.2007.04.087
- A.U. Mane, K. Shalini, A. Wohlfart, A. Devi and S.A. Shivashankar, J. Cryst. Growth, 240, 157 (2002); https://doi.org/10.1016/S0022-0248(02)00860-6
- A. Rumplecker, F. Kleitz, E.L. Salabas and F. Schüth, Chem. Mater., 19, 485 (2007); https://doi.org/10.1021/cm0610635
- F. Mohandes, F. Davar and M. Salavati-Niasari, J. Magn. Magn. Mater., 322, 872 (2010); https://doi.org/10.1016/j.jmmm.2009.11.019
- L. Ren, P. Wang, Y. Han, C. Hu and B. Wei, Mater. Phys. Lett., 476, 78 (2009); https://doi.org/10.1016/j.cplett.2009.06.015
- L. Li, Y. Chu, Y. Liu, J.L. Song, D. Wang and X.W. Du, Mater. Lett., 62, 1507 (2008); https://doi.org/10.1016/j.matlet.2007.09.012
- D.Y. Kim, S.H. Ju, H.Y. Koo, S.K. Hong and Y.C. Kang, J. Alloys Compd., 417, 254 (2006); https://doi.org/10.1016/j.jallcom.2005.09.013
- F. Gu, C. Li, Y. Hu and L. Zhang, J. Cryst. Growth, 304, 369 (2007); https://doi.org/10.1016/j.jcrysgro.2007.03.040
- X. Wang, X.Y. Chen, L.S. Gao, H.G. Zheng, Z. Zhang and Y.T. Qian, J. Phys. Chem. B, 108, 16401 (2004); https://doi.org/10.1021/jp048016p
- A.S. Bhatt, D.K. Bhat, C.W. Tai and M.S. Santosh, Mater. Chem. Phys., 125, 347 (2011); https://doi.org/10.1016/j.matchemphys.2010.11.003
- R.M. Wang, C.M. Liu, H.Z. Zhang, C.P. Chen, L. Guo, H.B. Xu and S.H. Yang, Appl. Phys. Lett., 85, 2080 (2004); https://doi.org/10.1063/1.1789577
- H. Duan, D.Wang and Y. Li, Chem. Soc. Rev., 44, 5778 (2015); https://doi.org/10.1039/C4CS00363B
- K. Elumalai, S. Velmurugan, S. Ravi, V. Kathiravan and G. Adaikala Raj, Adv. Powder Technol., 26, 1639 (2015); https://doi.org/10.1016/j.apt.2015.09.008
- S.J. Hoseini, M. Darroudi, R. Kazemi Oskuee, L. Gholami and A. Khorsand Zak, Adv. Powder Technol., 26, 991 (2015); https://doi.org/10.1016/j.apt.2015.04.003
- S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
- S.K. Kannan and M. Sundrarajan, Adv. Powder Technol., 26, 1505 (2015); https://doi.org/10.1016/j.apt.2015.08.009
- A.K. Mittal, Y. Chisti and U.C. Banerjee, Biotechnol. Adv., 31, 346 (2013); https://doi.org/10.1016/j.biotechadv.2013.01.003
- A.B. Samui, D.S. Patil, C.D. Prasad and N.M. Gokhale, Adv. Powder Technol., 27, 1879 (2016); https://doi.org/10.1016/j.apt.2016.06.010
- B. Siripireddy and B.K. Mandal, Adv. Powder Technol., 28, 785 (2017); https://doi.org/10.1016/j.apt.2016.11.026
- M. Sundrarajan, S. Ambika and K. Bharathi, Adv. Powder Technol., 26, 1294 (2015); https://doi.org/10.1016/j.apt.2015.07.001
- M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri and R. Khosravi, Adv. Powder Technol., 28, 122 (2017); https://doi.org/10.1016/j.apt.2016.09.003
- J.K. Patra, Y. Kwon and K.-H. Baek, Adv. Powder Technol., 27, 2204 (2016); https://doi.org/10.1016/j.apt.2016.08.005
- J.K. Sharma, P. Srivastava, G. Singh, M.S. Akhtar and S. Ameen, Mater. Sci. Eng. B, 193, 181 (2015); https://doi.org/10.1016/j.mseb.2014.12.012
- A. Diallo, A.C. Beye, T.B. Doyle, E. Park and M. Maaza, Green Chem. Lett. Rev., 8, 30 (2015); https://doi.org/10.1080/17518253.2015.1082646
- I. Bibi, N. Nazar, M. Iqbal, S. Kamal, H. Nawaz, S. Nouren, Y. Safa, K. Jilani, M. Sultan, S. Ata, F. Rehman and M. Abbas, Adv. Powder Technol., 28, 2035 (2017); https://doi.org/10.1016/j.apt.2017.05.008
- B. Sasi and K.G. Gopchandran, Nanotechnology, 18, 115613 (2007); https://doi.org/10.1088/0957-4484/18/11/115613
- K. Anandan and V. Rajendran, Mater. Sci. Eng. B, 199, 48 (2015); https://doi.org/10.1016/j.mseb.2015.04.015
- M. Jeyaraj, S. Gurunathan, M. Qasim, M.-H. Kang and J.-H. Kim, Nanomaterials, 9, 1719 (2019); https://doi.org/10.3390/nano9121719
- R. Hada, Int. Res. J. Pure Appl. Chem., 3, 111 (2013); https://doi.org/10.9734/IRJPAC/2013/2937
- Y. Gangarajula and B. Gopal, Appl. Catal A, 475, 211 (2014); https://doi.org/10.1016/j.apcata.2014.01.036
- R. Veerasamy, T.Z. Xin, S. Gunasagaran, T.F.W. Xiang, E.F.C. Yang, N. Jeyakumar and S.A. Dhanaraj, J. Saudi Chem. Soc., 15, 113 (2011); https://doi.org/10.1016/j.jscs.2010.06.004
- A. Kar and A.K. Ray, Am. J. Nanosci. Nanotechnol., 2, 17 (2014); https://doi.org/10.11648/j.nano.20140202.11
- T. Jiang, Y. Wang, D. Meng and M. Yu, Superlatt. Microstruct., 85, 1 (2015); https://doi.org/10.1016/j.spmi.2015.05.014
- A.F. Mohd Abd Fatah and N. A. Hamid, Fund. Appl. Sci., 14, 391 (2018); https://doi.org/10.11113/mjfas.v14n3.1220
- S. Sundar, G. Venkatachalam and S.J. Kwon, Nanomaterials, 8, E823 (2018); https://doi.org/10.3390/nano8100823
- B.T. Sone, A. Diallo, X.G. Fuku, A. Gurib-Fakim and M. Maaza, Arab. J. Chem., 13, 160 (2020); https://doi.org/10.1016/j.arabjc.2017.03.004
- Q. Maqbool, S. Iftikhar, M. Nazar, F. Abbas, A. Saleem, T. Hussain, R. Kausar, S. Anwaar and N. Jabeen, IET Nanobiotechnol., 11, 463 (2017); https://doi.org/10.1049/iet-nbt.2016.0125
- W.M. Mohammed, T.H. Mubark and R.M.S. Al-Haddad, Int. J. Appl. Eng. Res. Dev., 13, 10559 (2018).
- J. Emima Jeronsia, L. Allwin Joseph, P. Annie Vinosha, A. Jerline Mary and S. Jerome Das, Mater. Today Proc., 8, 214 (2019); https://doi.org/10.1016/j.matpr.2019.02.103
- M.H. Koupaei, B. Shareghi, A.A. Saboury, F. Davar, A. Semnani and M. Evini, RSC Adv., 6, 42313 (2016); https://doi.org/10.1039/C5RA24862K
- J. Sackey, A.C. Nwanya, A.K.H. Bashir, N. Matinise, J.B. Ngilirabanga, A.E. Ameh, E. Coetsee and M. Maaza, Mater. Chem. Phys., 244, 122714 (2020); https://doi.org/10.1016/j.matchemphys.2020.122714
- K. Vishveshvar, M.A. Krishnan, K. Haribabu and S. Vishnuprasad, BioNanoSci., 8, 554 (2018); https://doi.org/10.1007/s12668-018-0508-5
- S. Pourbeyram, J. Abdollahpour and M. Soltanpour, Mater. Sci. Eng. C, 94, 850 (2019); https://doi.org/10.1016/j.msec.2018.10.034
- M. Rafique, A.J. Shaikh, R. Rasheed, M.B. Tahir, S.S.A. Gillani, A. Usman, M. Imran, A. Zakir, Z.U.H. Khan and F. Rabbani, J. Inorg. Organomet. Polym. Mater., 28, 2455 (2018); https://doi.org/10.1007/s10904-018-0921-9
- A. Azam, A.S. Ahmed, M. Oves, M. Khan and A. Memic, Int. J. Nanomed., 7, 3527 (2012); https://doi.org/10.2147/IJN.S29020
- S.A. Akintelu and A.S. Folorunso, J. Nanotechnol. Nanomed. Nanobiotechnol., 6, 22 (2019); https://doi.org/10.24966/NTMB-2044/100022
- K.D. Sirdeshpande, A. Sridhar, K.M. Cholkar and R. Selvaraj, Appl. Nanosci., 8, 675 (2018); https://doi.org/10.1007/s13204-018-0698-8
- M. Saravanan, S.K. Barik, D.M. Ali, P. Prakash and A. Pugazhendhi, Microb. Pathog., 116, 221 (2018); https://doi.org/10.1016/j.micpath.2018.01.038
- M.S. Samuel, S. Jose, E. Selvarajan, T. Mathimani and A. Pugazhendhi, J. Photochem. Photobiol. B, 202, 111642 (2020); https://doi.org/10.1016/j.jphotobiol.2019.111642
- M. Hosseini-Koupaei, B. Shareghi, A.A. Saboury, F. Davar, V.A. Sirotkin, M.H. Hosseini-Koupaei and Z. Enteshari, Int. J. Biol. Macromol., 122, 732 (2019); https://doi.org/10.1016/j.ijbiomac.2018.11.001
- A.B. Rezaie, M. Montazer and M.M. Rad, J. Photochem. Photobiol. B, 176, 100 (2017); https://doi.org/10.1016/j.jphotobiol.2017.09.021
- S. Chand Mali, S. Raj and R. Trivedi, Biochem. Biophys. Rep., 20, 100699 (2019); https://doi.org/10.1016/j.bbrep.2019.100699
- F. Duman, I. Ocsoy and F.O. Kup, Mater. Sci. Eng. C, 60, 333 (2016); https://doi.org/10.1016/j.msec.2015.11.052
- V. Srikant and D.R. Clarke, J. Appl. Phys., 83, 5447 (1998); https://doi.org/10.1063/1.367375
- P.K. Stoimenov, R.L. Klinger, G.L. Marchin and K.J. Klabunde, Langmuir, 18, 6679 (2002); https://doi.org/10.1021/la0202374
- M. Roselli, A. Finamore, I. Garaguso, M.S. Britti and E. Mengheri, J. Nutr., 133, 4077 (2003); https://doi.org/10.1093/jn/133.12.4077
- N.A.N. Mohamad, N.A. Arham, J. Jai and A. Hadi, Adv. Mater. Res., 832, 350 (2014); https://doi.org/10.4028/www.scientific.net/AMR.832.350
- V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Acta Naturae, 6, 35 (2014); https://doi.org/10.32607/20758251-2014-6-1-35-44
- A.G. Ingale and A.N. Chaudhari, J. Nanomed. Nanotechnol., 4, 1 (2013); https://doi.org/10.4172/2157-7439.1000165
- S.M. Roopan, V.D. Rajeswari, V.N. Kalpana and G. Elango, Appl. Microbiol. Biotechnol., 100, 1153 (2016); https://doi.org/10.1007/s00253-015-7190-0
- J. Rajkumari, C.M. Magdalane, B. Siddhardha, M.V. Arasu, N.A. AlDhabi, J. Madhavan, G. Ramalingam, A.K.M. Ghilan, V. Duraipandiayan and K. Kaviyarasu, J. Photochem. Photobiol. B, 201, 111667 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111667
- S. Marimuthu, A.A. Rahuman, C. Jayaseelan, T. Santhoshkumar, A.V. Kirthi, K. Velayutham, A. Bagavan, C. Kamaraj, G. Elango, M. Iyappan, C. Siva, L. Karthik and K.V. Rao, Asian Pac. J. Trop. Med., 6, 682 (2013); https://doi.org/10.1016/S1995-7645(13)60118-2
- P.O. Akinola, A. Lateef, T.B. Asafa, L.S. Beukes, A.S. Hakeem and H.M. Irshad, Heliyon, 6, e04610 (2020); https://doi.org/10.1016/j.heliyon.2020.e04610
- R. Dobrucka, Iran. J. Pharm. Res., 16, 756 (2017).
- T. Santhoshkumar, A.A. Rahuman, C. Jayaseelan, G. Rajakumar, S. Marimuthu, A.V. Kirthi, K. Velayutham, J. Thomas, J. Venkatesan and S.-K. Kim, Asian Pac. J. Trop. Med., 7, 968 (2014); https://doi.org/10.1016/S1995-7645(14)60171-1
- G. Rajakumar, A.A. Rahuman, S.M. Roopan, I.M. Chung, K. Anbarasan and V. Karthikeyan, Parasitol. Res., 114, 571 (2015); https://doi.org/10.1007/s00436-014-4219-8
- N.A. Al-Shabib, F.M. Husain, F.A. Qais, N. Ahmad, A. Khan, A.A. Alyousef, M. Arshad, S. Noor, J.M. Khan, P. Alam, T.H. Albalawi and S.A. Shahzad, Front. Microbiol., 11, 1680 (2020); https://doi.org/10.3389/fmicb.2020.01680.
- G. Rajakumar, A.A. Rahuman, C. Jayaseelan, T. Santhoshkumar, S. Marimuthu, C. Kamaraj, A. Bagavan, A.A. Zahir, A.V. Kirthi, G. Elango, P. Arora, R. Karthikeyan, S. Manikandan and S. Jose, Parasitol. Res., 113, 469 (2014); https://doi.org/10.1007/s00436-013-3676-9
- K. Thandapani, M. Kathiravan, E. Namasivayam, I.A. Padiksan, G. Natesan, M. Tiwari, B. Giovanni and V. Perumal, Environ. Sci. Pollut. Res. Int., 25, 10328 (2018); https://doi.org/10.1007/s11356-017-9177-0
- M. Sundrarajan, K. Bama, M. Bhavani, S. Jegatheeswaran, S. Ambika, A. Sangili, P. Nithya and R. Sumathi, J. Photochem. Photobiol. B,171, 117 (2017); https://doi.org/10.1016/j.jphotobiol.2017.05.003
- S. Alghool, H.F. Abd El-Halim and A.M. Mostafa, J. Inorg. Organomet. Polym. Mater., 29, 1324 (2019); https://doi.org/10.1007/s10904-019-01096-1
- P. Deepika, H.M. Vinusha, B. Muneera, N.D. Rekha and K. Shiva Prasad, Curr. Res. Green Sustainable Chem., 1-2, 14 (2020); https://doi.org/10.1016/j.crgsc.2020.04.001
- K.S. Prasad, C. Shivamallu, G. Shruthi and M. Prasad, Chemistry Select, 3, 3860 (2018); https://doi.org/10.1002/slct.201800653
- W. Kang, C. Yan, X. Wang, C.Y. Foo, A.W.M. Tan, K.J.Z. Chee and P.S. Lee, J. Mater. Chem. C, 2, 4727 (2014); https://doi.org/10.1039/C4TC00158C
- P. Rasheed, S. Haq, M. Waseem, S. Rehman, W. Rehman, N. Bibi and S.A.A. Shah, Mater. Res. Expr., 7, 2053 (2020); https://doi.org/10.1088/2053-1591/ab6fa2
- N. Talavera, M. Navarro, A. Sifontes, Y. Díaz, H. Villalobos, G. Nino-Vega, A. Boada-Sucre and I. Gonzalez, Ed.: S.G. Padalai, Green Synthesis of Nanosized Vanadium Pentoxide using Saccharomyces Cervisiae as Biotemplate, In: Recent Research Developments in Materials Science, Kerala: Research Signpost, vol. 10, Chap. 5, pp. 89-102 (2013).
- C. Ramesh, K.T. Mohan Kumar, N. Latha and V. Ragunathan, Curr. Nanosci., 8, 603 (2012); https://doi.org/10.2174/157341312801784366
- B.T. Sone, E. Manikandan, A. Gurib-Fakim and M. Maaza, Green Chem. Lett. Rev., 9, 85 (2016); https://doi.org/10.1080/17518253.2016.1151083
- P. Sangwan and H. Kumar, Asian J. Pharm. Clin. Res., 10, 206 (2017); https://doi.org/10.22159/ajpcr.2017.v10i2.15189
- Z. Ahmad, A. Shamim, S. Mahmood, T. Mahmood and F. Khan, Eng. Appl. Sci. Letts., 1, 23 (2018); https://doi.org/10.30538/psrp-easl2018.0008
- J. Iqbal, B.A. Abbasi, A. Munir, S. Uddin, S. Kanwal and T. Mahmood, Microsc. Res. Technol., 83, 706 (2020); https://doi.org/10.1002/jemt.23460
- N. Gupta and S.P. Resmi, Imp. J. Interdisciplin. Res., 2, 532 (2016).
- N.O.M. Dewi and Y. Yulizar, Mater. Today: Proc., 22, 199 (2020); https://doi.org/10.1016/j.matpr.2019.08.088
- H.M. Abuzeid, S.A. Elsherif, N.A. Abdel Ghany and A.M. Hashem, J. Energy Storage, 21, 156 (2019); https://doi.org/10.1016/j.est.2018.11.021
- M. Souri, V. Hoseinpour, N. Ghaemi and A. Shakeri, Int. Nano Lett., 9, 73 (2019); https://doi.org/10.1007/s40089-018-0257-z
- V. Kumar, K. Singh, S. Panwar and S.K. Mehta, Int. Nano Lett., 7, 123 (2017); https://doi.org/10.1007/s40089-017-0205-3
- S.A. Khan, S. Shahid, B. Shahid, U. Fatima and S.A. Abbasi, Biomolecules, 10, 785 (2020); https://doi.org/10.3390/biom10050785
- A.V. Ramesh, B. Lavakusa, B.S. Mohan, Y.P. Kumar, D.R. Devi and K. Basavaiah, IOSR J. Appl. Chem., 10, 35 (2017); https://doi.org/10.9790/5736-1007013543
- A.V. Samrot, P. Senthilkumar, S. Rashmitha, P. Veera and C.S. Sahithya, J. Nanostruct. Chem., 8, 343 (2018); https://doi.org/10.1007/s40097-018-0279-0
- Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B. Bt Ahmad Khairudin, S.E. Bt Mohamad and K.X. Lee, Nanoscale Res. Lett., 11, 276 (2016); https://doi.org/10.1186/s11671-016-1498-2
- A. Azizi, J. Inorg. Organomet. Polym., 30, 3552 (2020); https://doi.org/10.1007/s10904-020-01500-1
- A.A. Barzinjy, D.A. Abdul, F.H.S. Hussain and S.M. Hamad, Inorg. Nano-Metal Chem., 50, 620 (2020): https://doi.org/10.1080/24701556.2020.1723027
- A. Azizi, J. Inorg. Organomet. Polym. Mater., 30, 3552 (2020); https://doi.org/10.1007/s10904-020-01500-1
- G. Sathishkumar, V. Logeshwaran, S. Sarathbabu, P.K. Jha, M. Jeyaraj, C. Rajkuberan, N. Senthilkumar and S. Sivaramakrishnan, Artif. Cells Nanomed. Biotechnol., 46, 589 (2018); https://doi.org/10.1080/21691401.2017.1332635
- S. Narayanan, B.N. Sathy, U. Mony, M. Koyakutty, S.V. Nair and D. Menon, ACS Appl. Mater. Interfaces, 4, 251 (2012); https://doi.org/10.1021/am201311c
- N. Basavegowda, K. Mishra and Y. Lee, RSC Adv., 4, 61660 (2014); https://doi.org/10.1039/C4RA11623B
- N. Basavegowda, K.B. Somai Magar, K. Mishra and Y.R. Lee, New J. Chem., 38, 5415 (2014); https://doi.org/10.1039/C4NJ01155D
- S. Dubey, J. Kumar, A. Kumar and Y.C. Sharma, Adv. Powder Technol., 29, 2583 (2018); https://doi.org/10.1016/j.apt.2018.03.009
- N. Akhlaghi, G. Najafpour-Darzi and H. Younesi, Adv. Powder Technol., 31, 3562 (2020); https://doi.org/10.1016/j.apt.2020.07.004
- C.-M. Hsu, Y.-H. Huang, H.-J. Chen, W.-C. Lee, H.-W. Chiu, J.P. Maity, C.-C. Chen, Y.-H. Kuo and C.-Y. Chen, Mater. Today Commun., 14, 302 (2018); https://doi.org/10.1016/j.mtcomm.2018.02.005
- D.C. Onwudiwe, M.P. Ravele and E.E. Elemike, Nano-Structures & Nano-Objects, 23, 100470 (2020); https://doi.org/10.1016/j.nanoso.2020.100470
- F.S. Razavi, A. Sobhani, O. Amiri, M. Ghiyasiyan-Arani and M. Salavati-Niasari, Int. J. Hydrogen Energy, 45, 17662 (2020); https://doi.org/10.1016/j.ijhydene.2020.04.273
- I. Bibi, N. Nazar, M. Iqbal, S. Kamal, H. Nawaz, S. Nouren, Y. Safa, K. Jilani, M. Sultan, S. Ata, F. Rehman and M. Abbas, Adv. Powder Technol., 28, (2017); https://doi.org/10.1016/j.apt.2017.05.008
- A.S. Vijayanandan and R.M. Balakrishnan, J. Environ. Manage., 218, 442 (2018); https://doi.org/10.1016/j.jenvman.2018.04.032
- T. Rasheed, F. Nabeel, M. Bilal and H.M.N. Iqbal, Biocatal. Agric. Biotechnol., 19, 101154 (2019); https://doi.org/10.1016/j.bcab.2019.101154
- A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, X. Zhang and L.J. Kennedy, Surf. Interfaces, 20, 100553 (2020); https://doi.org/10.1016/j.surfin.2020.100553
- P. Karpagavinayagam, A. Emi Princess Prasanna and C. Vedhi, Mater. Today Proc., 48, 136 (2022); https://doi.org/10.1016/j.matpr.2020.04.183
- M.I. Din, A.G. Nabi, A. Rani, A. Aihetasham and M. Mukhtar, Environ. Nanotechnol. Monit. Manage., 9, 29 (2018); https://doi.org/10.1016/j.enmm.2017.11.005
- A.C. Nwanya, M.M. Ndipingwi, C.O. Ikpo, R.M. Obodo, S.C. Nwanya, S. Botha, F.I. Ezema, E.I. Iwuoha and M. Maaza, J. Alloys Compd., 822, 153581 (2020); https://doi.org/10.1016/j.jallcom.2019.153581
- F. Ibraheem, M.H. Aziz, M. Fatima, F. Shaheen, S.M. Ali and Q. Huang, Mater. Lett., 234, 129 (2018); https://doi.org/10.1016/j.matlet.2018.09.075
- A.A. Ezhilarasi, J.J. Vijaya, L.J. Kennedy and K. Kaviyarasu, Mater. Chem. Phys., 241, 122419 (2020); https://doi.org/10.1016/j.matchemphys.2019.122419
- K. Lingaraju, H. Raja Naika, H. Nagabhushana, K. Jayanna, S. Devaraja and G. Nagaraju, Arab. J. Chem., 13, 4712 (2019); https://doi.org/10.1016/j.arabjc.2019.11.003
- Z. Sabouri, A. Akbari, H.A. Hosseini, M. Khatami and M. Darroudi, Polyhedron, 178, 114351 (2020); https://doi.org/10.1016/j.poly.2020.114351
- S.C. Mali, S. Raj and R. Trivedi, Biochem. Biophys. Rep., 20, 100699 (2019); https://doi.org/10.1016/j.bbrep.2019.100699
- M. Rafique, F. Shafiq, S.S. Ali Gillani, M. Shakil, M.B. Tahir and I. Sadaf, Optik, 208, 164053 (2020); https://doi.org/10.1016/j.ijleo.2019.164053
- S. Chaudhary, D. Rohilla, A. Umar, N. Kaur and A. Shanavas, Ceram. Int., 45, 15025 (2019); https://doi.org/10.1016/j.ceramint.2019.04.239
- A.Y. Ghidan, T.M. Al-Antary and A.M. Awwad, Environ. Nanotechnol. Monitor. Manage., 6, 95 (2016);
- https://doi.org/10.1016/j.enmm.2016.08.002
- S. Hemmati, L. Mehrazin, M. Hekmati, M. Izadi and H. Veisi, Mater. Chem. Phys., 214, 527 (2018); https://doi.org/10.1016/j.matchemphys.2018.04.114
- S. Chakraborty, J.J. Farida, R. Simon, S. Kasthuri and N.L. Mary, Surf. Interfaces, 19, 100488 (2020). https://doi.org/10.1016/j.surfin.2020.100488
- M. Ganesh, S.G. Lee, J. Jayaprakash, M. Mohankumar and H.T. Jang, Biocatal. Agric. Biotechnol., 19, 101129 (2019); https://doi.org/10.1016/j.bcab.2019.101129
- G.T. Anand, D. Renuka, R. Ramesh, L. Anandaraj, S.J. Sundaram, G. Ramalingam, C.M. Magdalane, A.K.H. Bashir, M. Maaza and K. Kaviyarasu, Surf. Interfaces, 17, 100376 (2019); https://doi.org/10.1016/j.surfin.2019.100376
- G. Sharmila, M. Thirumarimurugan and C. Muthukumaran, Microchem. J., 145, 578 (2019); https://doi.org/10.1016/j.microc.2018.11.022
- D. Suresh, P.C. Nethravathi, H. Udayabhanu, H. Nagabhushana, H. Rajanaika and S.C. Sharma, Mater. Sci. Semicond. Process., 31, 446 (2015); https://doi.org/10.1016/j.mssp.2014.12.023
- A. Diallo, B.D. Ngom, E. Park and M. Maaza, J. Alloys Compd., 646, 425 (2015); https://doi.org/10.1016/j.jallcom.2015.05.242
- F.T. Thema, E. Manikandan, M.S. Dhlamini and M. Maaza, Mater. Lett., 161, 124 (2015); https://doi.org/10.1016/j.matlet.2015.08.052
- M.S. Geetha, H. Nagabhushana and H.N. Shivananjaiah, J. Sci.: Adv. Mater. Devices, 1, 301 (2016); https://doi.org/10.1016/j.jsamd.2016.06.015
- M. Ramesh, M. Anbuvannan and G. Viruthagiri, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 864 (2015); https://doi.org/10.1016/j.saa.2014.09.105
- J. Ruangtong, J. T-Thienprasert and N.P. T-Thienprasert, Mater. Today Commun., 24, 101224 (2020); https://doi.org/10.1016/j.mtcomm.2020.101224
References
T.S. Wong and U. Schwaneberg, Curr. Opin. Biotechnol., 14, 590 (2003); https://doi.org/10.1016/j.copbio.2003.09.008
A. Ramanavicius, A. Kausaite and A. Ramanaviciene, Biosens. Bioelectron., 20, 1962 (2005); https://doi.org/10.1016/j.bios.2004.08.032
M.A.E. Aleem Ali El-Remaily, A.M. Abu-Dief and R.M. El-Khatib, Appl. Organomet. Chem., 30, 1022 (2016); https://doi.org/10.1002/aoc.3536
L.H. Abdel-Rahman, A.M. Abu-Dief, R.M. El-Khatib and S.M. AbdelFatah, Bioorg. Chem., 69, 140 (2016); https://doi.org/10.1016/j.bioorg.2016.10.009
A.M. Abu-Dief and W.S. Mohamed, Mater. Res. Express, 4, 035039 (2017); https://doi.org/10.1088/2053-1591/aa6712
E.M.M. Ibrahim, L.H. Abdel-Rahman, A.M. Abu-Dief, A. Elshafaie, S.K. Hamdan and A.M. Ahmed, Mater. Res. Bull., 99, 103 (2018); https://doi.org/10.1016/j.materresbull.2017.11.002
A.A. Marzouk, A.M. Abu-Dief and A.A. Abdelhamid, Appl. Organomet. Chem., 32, 3794 (2018); https://doi.org/10.1002/aoc.3794
F. Buazar, M. Bavi, F. Kroushawi, M. Halvani, A. Khaledi-Nasab and S.A. Hossieni, J. Exp. Nanosci., 11, 175 (2016); https://doi.org/10.1080/17458080.2015.1039610
A.M. Awwad, B.A. Albiss and N.M. Salem, SMU Med. J., 2, 91 (2015).
M. Nasrollahzadeh, F. Ghorbannezhad, Z. Issaabadi and S.M. Sajadi, Chem. Rec., 19, 601 (2019); https://doi.org/10.1002/tcr.201800069
M. Nasrollahzadeh, S. Mahmoudi-Gom Yek, N. Motahharifar and M. Ghafori Gorab, Chem. Rec., 19, 2436 (2019); https://doi.org/10.1002/tcr.201800202
M. Ahangari, Z. Salouti, A.R. Heidari, A.A. Kazemizadeh and A.A. Safari, Drug Deliv., 20, 34 (2013); https://doi.org/10.3109/10717544.2012.746402
S.A. Wolf, D.D. Awschalom, R.aA. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chtchelkanova and D.M. Treger, Science, 294, 1488 (2001); https://doi.org/10.1126/science.1065389
J.B. Gruber, M.E. Hills, M.D. Seltzer, S.B. Stevens and C.A. Morrison, J. Appl. Phys., 72, 5253 (1992); https://doi.org/10.1063/1.352008
S.D. Birmingham, Am. Ceram. Soc. Bull., 73, 121 (1994).
D.-S. Cheong and W.A. Sanders, J. Am. Ceram. Soc., 75, 3331 (1992); https://doi.org/10.1111/j.1151-2916.1992.tb04429.x
N. Imanaka, S. Banno and G. Adachi, Chem. Lett., 23, 319 (1994); https://doi.org/10.1246/cl.1994.319
K. Wojtera, Pol. J. Chem., 57, 947 (1983).
J. Fierro, S. Mendioroz and J. Sanz, Colloid Surf. Sci, 93, 487 (1983); https://doi.org/10.1016/0021-9797(83)90432-0
I. Ladany, P.J. Zanzucchi, J.T. Andrews, J. Kane and E. DePiano, Appl. Opt., 25, 472 (1986); https://doi.org/10.1364/AO.25.000472
M. Nasrollahzadeh and S. Mohammad Sajadi, J. Colloid Interface Sci., 465, 121 (2016); https://doi.org/10.1016/j.jcis.2015.11.038
D. Baskar and G. Nallathambi, Mater. Lett., 209, 303 (2017); https://doi.org/10.1016/j.matlet.2017.08.038
I.-M. Chung, I. Park, K. Seung-Hyun, M. Thiruvengadam and G. Rajakumar, Nanoscale Res. Lett., 11, 40 (2016); https://doi.org/10.1186/s11671-016-1257-4
A.K.T. Bui, A. Bacic and F. Pettolino, Phytochemistry, 67, 1271 (2006); https://doi.org/10.1016/j.phytochem.2006.04.023
M. Skocaj, M. Filipic, J. Petkovic and S. Novak, Radiol. Oncol., 45, 227 (2011); https://doi.org/10.2478/v10019-011-0037-0
P. Ravikumar and S. Sathish Kumar, Int. J. Technol. Res. Appl., 2, 108 (2014).
L. Inbathamizh, T.M. Ponnu and E.J. Mary, J. Pharm. Res., 6, 32 (2013); https://doi.org/10.1016/j.jopr.2012.11.010
M.A. Zoubi, H.K. Farag and F. Endres, J. Mater. Sci., 44, 1363 (2009); https://doi.org/10.1007/s10853-008-3004-4
N. Asim, S. Radiman, M.A. Yarmo and M.S. Banaye Golriz, Micropor. Mesopor. Mater., 120, 397 (2009); https://doi.org/10.1016/j.micromeso.2008.12.013
S. Kobayashi, T. Takemura and F. Kaneko, Jpn. J. Appl. Phys., 26, L1274 (1987); https://doi.org/10.1143/JJAP.26.L1274
Y. Fujita, K. Miyazaki and C. Tatsuyama, Jpn. J. Appl. Phys., 24, 1082 (1985); https://doi.org/10.1143/JJAP.24.1082
D. Wruck, S. Ramamurthi and M. Rubin, Thin Solid Films, 182, 79 (1989); https://doi.org/10.1016/0040-6090(89)90245-9
B.B. Lakshmi, C.J. Patrissi and C.R. Martin, Chem. Mater., 9, 2544 (1997); https://doi.org/10.1021/cm970268y
B. Alonso and J. Livage, J. Solid State Chem., 148, 16 (1999); https://doi.org/10.1006/jssc.1999.8283
A.B. Sifontes, G. González, L.M. Tovar, F.J. Méndez, M.E. Gomes, E. Cañizales, G. Niño-Vega, H. Villalobos and J.L. Brito, Mater. Res. Bull., 48, 730 (2013); https://doi.org/10.1016/j.materresbull.2012.11.016
W. He, Z. Li, Y. Wang, X. Chen, X. Zhang, H. Zhao, S. Yan and W. Zhou, J. Mater. Sci. Mater. Med., 21, 155 (2010); https://doi.org/10.1007/s10856-009-3865-3
D. Li, C. Tong, W. Ji, Z. Fu, Z. Wan, Q. Huang, Y. Ming, A. Mei, Y. Hu, Y. Rong and H. Han, ACS Sustain. Chem. & Eng., 7, 2619 (2019); https://doi.org/10.1021/acssuschemeng.8b05653
A.K. Prasad, S. Dhara and S. Dash, Sens. Lett., 15, 552 (2017); https://doi.org/10.1166/sl.2017.3847
C. Niu, M. Huang, P. Wang, J. Meng, X. Liu, X. Wang, K. Zhao, Y. Yu, Y. Wu, C. Lin and L. Mai, Nano Res., 9, 128 (2016); https://doi.org/10.1007/s12274-015-0896-6
R. Berenguer, M.O. Guerrero-Pérez, I. Guzmán, J. Rodríguez-Mirasol and T. Cordero, ACS Omega, 2, 7739 (2017); https://doi.org/10.1021/acsomega.7b01061
Á. Cunha, J. Martins, N. Rodrigues and F. Brito, Int. J. Energy Res., 39, 889 (2015); https://doi.org/10.1002/er.3260
R.R. Langeslay, D.M. Kaphan, C.L. Marshall, A.P. Sattelberger, P.C. Stair and M. Delferro, Chem. Rev., 119, 2128 (2019); https://doi.org/10.1021/acs.chemrev.8b00245
Y. Zhang, J. Zheng, Y. Zhao, T. Hu, Z. Gao and C. Meng, Appl. Surf. Sci., 377, 385 (2016); https://doi.org/10.1016/j.apsusc.2016.03.180
W. Jin, B. Dong, W. Chen, C. Zhao, L. Mai and Y. Dai, Sens. Actuators B Chem., 145, 211 (2010); https://doi.org/10.1016/j.snb.2009.11.059.
X. Yang, X. Peng, C. Xu and F. Wang, J. Electrochem. Soc., 156, C167 (2009); https://doi.org/10.1149/1.3082378
M. Ludwig, E. Sniezek, I. Jastrzebska, R. Prorok, Y. Li, N. Liao, M. Nath, J. Vlcek and J. Szczerba, Materials, 15, 725 (2022); https://doi.org/10.3390/ma15030725
J.-Y. Hwang and D.-S. Seo, J. Electrochem. Soc., 157, J351 (2010); https://doi.org/10.1149/1.3473785
M. Freemantle, Chemical Eng News Archive, 76, 8 (1998); https://doi.org/10.1021/cen-v076n006.p008
J.I. Fasick, N. Lee and D.D. Oprian, Biochemistry, 38, 11593 (1999); https://doi.org/10.1021/bi991600h
H. Rotter, M.V. Landau, M. Carrera, D. Goldfarb and M. Herskowitz, Appl. Catal. B, 47, 111 (2004); https://doi.org/10.1016/j.apcatb.2003.08.006
H. Rotter, M.V. Landau and M. Herskowitz, Environ. Sci. Technol., 39, 6845 (2005); https://doi.org/10.1021/es0500052
L. Chen, Z. Song, X. Wang, S.V. Prikhodko, J. Hu, S. Kodambaka and R. Richards, Appl. Mater. Interf., 1, 1931 (2009); https://doi.org/10.1021/am900334q
Y.-L. Bai, H.-B. Xu, Y. Zhang and Z.-H. Li, J. Phys. Chem. Solids, 67, 2589 (2006); https://doi.org/10.1016/j.jpcs.2006.07.018
A.C. Santulli, M. Feygenson, F.E. Camino, M.C. Aronson and S.S. Wong, Chem. Mater., 23, 1000 (2011); https://doi.org/10.1021/cm102930z
D,-W. Kim, S.-I. Shin, J.-D. Lee and S.-G. Oh, Mater. Lett., 58, 189 (2004); https://doi.org/10.1016/j.matlet.2003.11.023
A.A. Ali, M. Madkour, F. Al Sagheer, M.I. Zaki and A.A. Nazeer, Catalysts, 10, 105 (2020); https://doi.org/10.3390/catal10010105
T.M. Al-Saadi and N.A. Hameed, Adv. Phys. Theor. Appl., 44, 139 (2015).
P. Li, H.B. Xu, Y. Zhang, Z.H. Li, S.L. Zheng and Y.L. Bai, Dyes Pigm., 80, 287 (2009); https://doi.org/10.1016/j.dyepig.2008.07.016
T.V. Rao, Y. Yang and A. Sayari, J. Mol. Catal. Chem., 301, 152 (2009); https://doi.org/10.1016/j.molcata.2008.12.026
G. Wang, L. Zhang, J. Deng, H. Dai, H. He and C.T. Au, Appl. Catal. A, 355, 192 (2009); https://doi.org/10.1016/j.apcata.2008.12.020
X. Pang, K. Gao, F. Luo, Y. Emirov, A.A. Levin and A.A. Volinsky, Thin Solid Films, 517, 1922 (2009); https://doi.org/10.1016/j.tsf.2008.10.026
X. Hou and K.L. Choy, Thin Solid Films, 516, 8620 (2008); https://doi.org/10.1016/j.tsf.2008.06.045
M. Abecassis-Wolfovich, H. Rotter, M.V. Landau, E. Korin, A.I. Erenburg, D. Mogilyansky and E. Garshtein, Stud. Surf. Sci. Catal., 146, 247 (2003); https://doi.org/10.1016/S0167-2991(03)80373-7
C.L. Li, H.X. Zhao, T. Takahashi and M. Matsumura, Mater. Sci. Eng. A, 308, 268 (2001); https://doi.org/10.1016/S0921-5093(00)01976-6
M.V. Landau, G.E. Shter, L. Titelman, V. Gelman, H. Rotter, G.S. Grader and M. Herskowitz, Ind. Eng. Chem. Res., 45, 7462 (2006); https://doi.org/10.1021/ie0606744
Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y. Chen and S.L. Suib, J. Am. Chem. Soc., 136, 11452 (2014); https://doi.org/10.1021/ja505186m
C. Wei, L. Yu, C. Cui, J. Lin, C. Wei, N. Mathews, F. Huo, T. Sritharan and Z. Xu, Chem. Commun., 50, 7885 (2014); https://doi.org/10.1039/c4cc02781g
Y. Lvov, B. Munge, O. Giraldo, I. Ichinose, S.L. Suib and J.F. Rusling, Langmuir, 16, 8850 (2000); https://doi.org/10.1021/la000110j
X.-L. Luo, J.-J. Xu, W. Zhao and H.-Y. Chen, Biosens. Bioelectron., 19, 1295 (2004); https://doi.org/10.1016/j.bios.2003.11.019
M. Wayu, Solids, 2, 232 ( 2021); https://doi.org/10.3390/solids2020015
A. Asfaram, M. Ghaedi, S. Hajati and A. Goudarzi, RSC Adv., 5, 72300 (2015); https://doi.org/10.1039/C5RA10815B
T.A. Abdullah, R.T. Rasheed, T. Juzsakova, N. Al-Jammal, M.A. Mallah, L.P. Cuong, A.D. Salman, E. Domokos, Z. Ali and I. Cretescu, Int. J. Environ. Sci. Technol., 18, 1499 (2021); https://doi.org/10.1007/s13762-020-02956-x
E. Moazzen, K. Kucuk, S. Aryal, E.V. Timofeeva and C.U. Segre, J. Power Sources, 448, 227374 (2020); https://doi.org/10.1016/j.jpowsour.2019.227374
S. Nazir, H. Jan, G. Zaman, T. Khan, H. Ashraf, B. Meer, M. Zia, S. Drouet, C. Hano and B.H. Abbasi, Artif. Cells, Nanomed. Biotechnol., 49, 625 (2021); https://doi.org/10.1080/21691401.2021.1984935
T. Li, T. Shi, X. Li, S. Zeng, L. Yin and Y. Pu, Int. J. Environ. Res. Public Health, 11, 7918 (2014); https://doi.org/10.3390/ijerph110807918
M.M. Najafpour, F. Rahimi, E.-M. Aro, S.I. Allakhverdiev and C.-H. Lee, J. R. Soc. Interface, 9, 2383 (2012); https://doi.org/10.1098/rsif.2012.0412
D. Van-Phuc, L. Ngoc-Chung and N. Ngoc-Tuan, Removal of Copper(II) From Aqueous Solution by Adsorption onto MnO2 Nanostructure: Equilibrium and Kinetic Studies, The 4th Academic Conference on Natural Science for Young Scientists, Master & Phd Students from Asean Countries, pp. 57-64 (2015).
A. Bahadur, S. Iqbal, A. Saeed, M.I. Bashir, M. Shoaib, M. Waqas, G. Shabir and A. Jabbar, Chem. Pap., 71, 1445 (2017); https://doi.org/10.1007/s11696-017-0138-3
D.L. Huber, Small, 1, 482 (2005); https://doi.org/10.1002/smll.200500006
R.M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, Ed.: 2 (2006).
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R.N. Muller, Chem. Rev., 108, 2064 (2008); https://doi.org/10.1021/cr068445e
A.S. Teja and P.-Y. Koh, Prog. Cryst. Growth Charact. Mater., 55, 22 (2009); https://doi.org/10.1016/j.pcrysgrow.2008.08.003
M. De Cuyper and M. Joniau, Eur. Biophys. J., 15, 311 (1988); https://doi.org/10.1007/BF00256482
S. Hasany, I. Ahmed, J. Rajan and A. Rehman, Nanosci. Nanotechnol., 2, 148 (2012); https://doi.org/10.5923/j.nn.20120206.01
Y. Cai, Y. Shen, A. Xie, S. Li and X. Wang, J. Magn. Magn. Mater., 322, 2938 (2010); https://doi.org/10.1016/j.jmmm.2010.05.009
N. Latha and M. Gowri, Int. J. Scient. Res., 3, 1551 (2014).
V.V. Makarov, S.S. Makarova, A.J. Love, O.V. Sinitsyna, A.O. Dudnik, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Langmuir, 30, 5982 (2014); https://doi.org/10.1021/la5011924
S. Venkateswarlu, B.N. Kumar, B. Prathima, K. Anitha and N.V.V. Jyothi, Phys B., 457, 30 (2015); https://doi.org/10.1016/j.physb.2014.09.007
C. Prasad, S. Gangadhara and P. Venkateswarlu, Appl. Nanosci., 6, 797 (2016); https://doi.org/10.1007/s13204-015-0485-8
V. Niraimathee, V. Subha, R.E. Ravindran and S. Renganathan, Int. J. Environ. Sustain. Dev., 15, 227 (2016); https://doi.org/10.1504/IJESD.2016.077370
M. Martínez-Cabanas, M. López-García, J.L. Barriada, R. Herrero and M.E. Sastre de Vicente, Chem. Eng. J., 301, 83 (2016); https://doi.org/10.1016/j.cej.2016.04.149
W.H. Li and N. Yang, Mater. Lett., 162, 157 (2016); https://doi.org/10.1016/j.matlet.2015.09.064
M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman and J. Amin, Molecules, 18, 7533 (2013); https://doi.org/10.3390/molecules18077533
J.K. Patra, M.S. Ali, I.G. Oh and K.H. Baek, Artif. Cells Nanomed. Biotechnol., 45, 349 (2017); https://doi.org/10.3109/21691401.2016.1153484
S. Gil, C.R. Correia and J.F. Mano, Adv. Healthc. Mater., 4, 883 (2015); https://doi.org/10.1002/adhm.201400611
M.F. Horst, D.F. Coral, M.B. Fernández van Raap, M. Alvarez and V. Lassalle, Mater. Sci. Eng., 74, 443 (2017); https://doi.org/10.1016/j.msec.2016.12.035
D. Azarifar, O. Badalkhani and Y. Abbasi, J. Sulfur Chem., 37, 656 (2016); https://doi.org/10.1080/17415993.2016.1177055
K. Hardani, F. Buazar, K. Ghanemi and M. Kashisaz, Am. Assoc. Sci. Technol. J. Nanosci., 1, 11 (2015).
D. He, L. Li, F. Bai, C. Zha, L. Shen, H.H. Kung and N. Bao, Chem. Eur. J., 22, 4454 (2016); https://doi.org/10.1002/chem.201504429
W. Sun, S. Mignani, M. Shen and X. Shi, Drug Discov. Today, 21, 1873 (2016); https://doi.org/10.1016/j.drudis.2016.06.028
J. Li, Y. Hu, J. Yang, P. Wei, W. Sun, M. Shen, G. Zhang and X. Shi, Biomaterials, 38, 10 (2015); https://doi.org/10.1016/j.biomaterials.2014.10.065
W.M. Liu, Y.N. Xue, N. Peng, W.-T. He, R.-X. Zhuo and S.-W. Huang, J. Mater. Chem., 21, 13306 (2011); https://doi.org/10.1039/c1jm11460c
H. El Ghandoor, Int. J. Electrochem. Sci., 7, 5734 (2012).
Y. Sun, J. Li, Y. Wang, C. Ding, Y. Lin, W. Sun and C. Luo, Spectrochim. Acta A Mol. Biomol. Spectrosc., 178, 1 (2017); https://doi.org/10.1016/j.saa.2017.01.057
W. Lu, M. Ling, M. Jia, P. Huang, C. Li and B. Yan, Mol. Med. Rep., 9, 1080 (2014); https://doi.org/10.3892/mmr.2014.1906
T. Lai, Y. Lai, C. Lee, Y. Shu and C. Wang, Catal. Today, 131, 105 (2008); https://doi.org/10.1016/j.cattod.2007.10.039
M. El Baydi, G. Poillerat, J.-L. Rehspringer, J.L. Gautier, J.-F. Koenig and P. Chartier, J. Solid State Chem., 109, 281 (1994); https://doi.org/10.1006/jssc.1994.1105
S.W. Oh, H.J. Bang, Y.C. Bae and Y.K. Sun, J. Power Sources, 173, 502 (2007); https://doi.org/10.1016/j.jpowsour.2007.04.087
A.U. Mane, K. Shalini, A. Wohlfart, A. Devi and S.A. Shivashankar, J. Cryst. Growth, 240, 157 (2002); https://doi.org/10.1016/S0022-0248(02)00860-6
A. Rumplecker, F. Kleitz, E.L. Salabas and F. Schüth, Chem. Mater., 19, 485 (2007); https://doi.org/10.1021/cm0610635
F. Mohandes, F. Davar and M. Salavati-Niasari, J. Magn. Magn. Mater., 322, 872 (2010); https://doi.org/10.1016/j.jmmm.2009.11.019
L. Ren, P. Wang, Y. Han, C. Hu and B. Wei, Mater. Phys. Lett., 476, 78 (2009); https://doi.org/10.1016/j.cplett.2009.06.015
L. Li, Y. Chu, Y. Liu, J.L. Song, D. Wang and X.W. Du, Mater. Lett., 62, 1507 (2008); https://doi.org/10.1016/j.matlet.2007.09.012
D.Y. Kim, S.H. Ju, H.Y. Koo, S.K. Hong and Y.C. Kang, J. Alloys Compd., 417, 254 (2006); https://doi.org/10.1016/j.jallcom.2005.09.013
F. Gu, C. Li, Y. Hu and L. Zhang, J. Cryst. Growth, 304, 369 (2007); https://doi.org/10.1016/j.jcrysgro.2007.03.040
X. Wang, X.Y. Chen, L.S. Gao, H.G. Zheng, Z. Zhang and Y.T. Qian, J. Phys. Chem. B, 108, 16401 (2004); https://doi.org/10.1021/jp048016p
A.S. Bhatt, D.K. Bhat, C.W. Tai and M.S. Santosh, Mater. Chem. Phys., 125, 347 (2011); https://doi.org/10.1016/j.matchemphys.2010.11.003
R.M. Wang, C.M. Liu, H.Z. Zhang, C.P. Chen, L. Guo, H.B. Xu and S.H. Yang, Appl. Phys. Lett., 85, 2080 (2004); https://doi.org/10.1063/1.1789577
H. Duan, D.Wang and Y. Li, Chem. Soc. Rev., 44, 5778 (2015); https://doi.org/10.1039/C4CS00363B
K. Elumalai, S. Velmurugan, S. Ravi, V. Kathiravan and G. Adaikala Raj, Adv. Powder Technol., 26, 1639 (2015); https://doi.org/10.1016/j.apt.2015.09.008
S.J. Hoseini, M. Darroudi, R. Kazemi Oskuee, L. Gholami and A. Khorsand Zak, Adv. Powder Technol., 26, 991 (2015); https://doi.org/10.1016/j.apt.2015.04.003
S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
S.K. Kannan and M. Sundrarajan, Adv. Powder Technol., 26, 1505 (2015); https://doi.org/10.1016/j.apt.2015.08.009
A.K. Mittal, Y. Chisti and U.C. Banerjee, Biotechnol. Adv., 31, 346 (2013); https://doi.org/10.1016/j.biotechadv.2013.01.003
A.B. Samui, D.S. Patil, C.D. Prasad and N.M. Gokhale, Adv. Powder Technol., 27, 1879 (2016); https://doi.org/10.1016/j.apt.2016.06.010
B. Siripireddy and B.K. Mandal, Adv. Powder Technol., 28, 785 (2017); https://doi.org/10.1016/j.apt.2016.11.026
M. Sundrarajan, S. Ambika and K. Bharathi, Adv. Powder Technol., 26, 1294 (2015); https://doi.org/10.1016/j.apt.2015.07.001
M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri and R. Khosravi, Adv. Powder Technol., 28, 122 (2017); https://doi.org/10.1016/j.apt.2016.09.003
J.K. Patra, Y. Kwon and K.-H. Baek, Adv. Powder Technol., 27, 2204 (2016); https://doi.org/10.1016/j.apt.2016.08.005
J.K. Sharma, P. Srivastava, G. Singh, M.S. Akhtar and S. Ameen, Mater. Sci. Eng. B, 193, 181 (2015); https://doi.org/10.1016/j.mseb.2014.12.012
A. Diallo, A.C. Beye, T.B. Doyle, E. Park and M. Maaza, Green Chem. Lett. Rev., 8, 30 (2015); https://doi.org/10.1080/17518253.2015.1082646
I. Bibi, N. Nazar, M. Iqbal, S. Kamal, H. Nawaz, S. Nouren, Y. Safa, K. Jilani, M. Sultan, S. Ata, F. Rehman and M. Abbas, Adv. Powder Technol., 28, 2035 (2017); https://doi.org/10.1016/j.apt.2017.05.008
B. Sasi and K.G. Gopchandran, Nanotechnology, 18, 115613 (2007); https://doi.org/10.1088/0957-4484/18/11/115613
K. Anandan and V. Rajendran, Mater. Sci. Eng. B, 199, 48 (2015); https://doi.org/10.1016/j.mseb.2015.04.015
M. Jeyaraj, S. Gurunathan, M. Qasim, M.-H. Kang and J.-H. Kim, Nanomaterials, 9, 1719 (2019); https://doi.org/10.3390/nano9121719
R. Hada, Int. Res. J. Pure Appl. Chem., 3, 111 (2013); https://doi.org/10.9734/IRJPAC/2013/2937
Y. Gangarajula and B. Gopal, Appl. Catal A, 475, 211 (2014); https://doi.org/10.1016/j.apcata.2014.01.036
R. Veerasamy, T.Z. Xin, S. Gunasagaran, T.F.W. Xiang, E.F.C. Yang, N. Jeyakumar and S.A. Dhanaraj, J. Saudi Chem. Soc., 15, 113 (2011); https://doi.org/10.1016/j.jscs.2010.06.004
A. Kar and A.K. Ray, Am. J. Nanosci. Nanotechnol., 2, 17 (2014); https://doi.org/10.11648/j.nano.20140202.11
T. Jiang, Y. Wang, D. Meng and M. Yu, Superlatt. Microstruct., 85, 1 (2015); https://doi.org/10.1016/j.spmi.2015.05.014
A.F. Mohd Abd Fatah and N. A. Hamid, Fund. Appl. Sci., 14, 391 (2018); https://doi.org/10.11113/mjfas.v14n3.1220
S. Sundar, G. Venkatachalam and S.J. Kwon, Nanomaterials, 8, E823 (2018); https://doi.org/10.3390/nano8100823
B.T. Sone, A. Diallo, X.G. Fuku, A. Gurib-Fakim and M. Maaza, Arab. J. Chem., 13, 160 (2020); https://doi.org/10.1016/j.arabjc.2017.03.004
Q. Maqbool, S. Iftikhar, M. Nazar, F. Abbas, A. Saleem, T. Hussain, R. Kausar, S. Anwaar and N. Jabeen, IET Nanobiotechnol., 11, 463 (2017); https://doi.org/10.1049/iet-nbt.2016.0125
W.M. Mohammed, T.H. Mubark and R.M.S. Al-Haddad, Int. J. Appl. Eng. Res. Dev., 13, 10559 (2018).
J. Emima Jeronsia, L. Allwin Joseph, P. Annie Vinosha, A. Jerline Mary and S. Jerome Das, Mater. Today Proc., 8, 214 (2019); https://doi.org/10.1016/j.matpr.2019.02.103
M.H. Koupaei, B. Shareghi, A.A. Saboury, F. Davar, A. Semnani and M. Evini, RSC Adv., 6, 42313 (2016); https://doi.org/10.1039/C5RA24862K
J. Sackey, A.C. Nwanya, A.K.H. Bashir, N. Matinise, J.B. Ngilirabanga, A.E. Ameh, E. Coetsee and M. Maaza, Mater. Chem. Phys., 244, 122714 (2020); https://doi.org/10.1016/j.matchemphys.2020.122714
K. Vishveshvar, M.A. Krishnan, K. Haribabu and S. Vishnuprasad, BioNanoSci., 8, 554 (2018); https://doi.org/10.1007/s12668-018-0508-5
S. Pourbeyram, J. Abdollahpour and M. Soltanpour, Mater. Sci. Eng. C, 94, 850 (2019); https://doi.org/10.1016/j.msec.2018.10.034
M. Rafique, A.J. Shaikh, R. Rasheed, M.B. Tahir, S.S.A. Gillani, A. Usman, M. Imran, A. Zakir, Z.U.H. Khan and F. Rabbani, J. Inorg. Organomet. Polym. Mater., 28, 2455 (2018); https://doi.org/10.1007/s10904-018-0921-9
A. Azam, A.S. Ahmed, M. Oves, M. Khan and A. Memic, Int. J. Nanomed., 7, 3527 (2012); https://doi.org/10.2147/IJN.S29020
S.A. Akintelu and A.S. Folorunso, J. Nanotechnol. Nanomed. Nanobiotechnol., 6, 22 (2019); https://doi.org/10.24966/NTMB-2044/100022
K.D. Sirdeshpande, A. Sridhar, K.M. Cholkar and R. Selvaraj, Appl. Nanosci., 8, 675 (2018); https://doi.org/10.1007/s13204-018-0698-8
M. Saravanan, S.K. Barik, D.M. Ali, P. Prakash and A. Pugazhendhi, Microb. Pathog., 116, 221 (2018); https://doi.org/10.1016/j.micpath.2018.01.038
M.S. Samuel, S. Jose, E. Selvarajan, T. Mathimani and A. Pugazhendhi, J. Photochem. Photobiol. B, 202, 111642 (2020); https://doi.org/10.1016/j.jphotobiol.2019.111642
M. Hosseini-Koupaei, B. Shareghi, A.A. Saboury, F. Davar, V.A. Sirotkin, M.H. Hosseini-Koupaei and Z. Enteshari, Int. J. Biol. Macromol., 122, 732 (2019); https://doi.org/10.1016/j.ijbiomac.2018.11.001
A.B. Rezaie, M. Montazer and M.M. Rad, J. Photochem. Photobiol. B, 176, 100 (2017); https://doi.org/10.1016/j.jphotobiol.2017.09.021
S. Chand Mali, S. Raj and R. Trivedi, Biochem. Biophys. Rep., 20, 100699 (2019); https://doi.org/10.1016/j.bbrep.2019.100699
F. Duman, I. Ocsoy and F.O. Kup, Mater. Sci. Eng. C, 60, 333 (2016); https://doi.org/10.1016/j.msec.2015.11.052
V. Srikant and D.R. Clarke, J. Appl. Phys., 83, 5447 (1998); https://doi.org/10.1063/1.367375
P.K. Stoimenov, R.L. Klinger, G.L. Marchin and K.J. Klabunde, Langmuir, 18, 6679 (2002); https://doi.org/10.1021/la0202374
M. Roselli, A. Finamore, I. Garaguso, M.S. Britti and E. Mengheri, J. Nutr., 133, 4077 (2003); https://doi.org/10.1093/jn/133.12.4077
N.A.N. Mohamad, N.A. Arham, J. Jai and A. Hadi, Adv. Mater. Res., 832, 350 (2014); https://doi.org/10.4028/www.scientific.net/AMR.832.350
V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Acta Naturae, 6, 35 (2014); https://doi.org/10.32607/20758251-2014-6-1-35-44
A.G. Ingale and A.N. Chaudhari, J. Nanomed. Nanotechnol., 4, 1 (2013); https://doi.org/10.4172/2157-7439.1000165
S.M. Roopan, V.D. Rajeswari, V.N. Kalpana and G. Elango, Appl. Microbiol. Biotechnol., 100, 1153 (2016); https://doi.org/10.1007/s00253-015-7190-0
J. Rajkumari, C.M. Magdalane, B. Siddhardha, M.V. Arasu, N.A. AlDhabi, J. Madhavan, G. Ramalingam, A.K.M. Ghilan, V. Duraipandiayan and K. Kaviyarasu, J. Photochem. Photobiol. B, 201, 111667 (2019); https://doi.org/10.1016/j.jphotobiol.2019.111667
S. Marimuthu, A.A. Rahuman, C. Jayaseelan, T. Santhoshkumar, A.V. Kirthi, K. Velayutham, A. Bagavan, C. Kamaraj, G. Elango, M. Iyappan, C. Siva, L. Karthik and K.V. Rao, Asian Pac. J. Trop. Med., 6, 682 (2013); https://doi.org/10.1016/S1995-7645(13)60118-2
P.O. Akinola, A. Lateef, T.B. Asafa, L.S. Beukes, A.S. Hakeem and H.M. Irshad, Heliyon, 6, e04610 (2020); https://doi.org/10.1016/j.heliyon.2020.e04610
R. Dobrucka, Iran. J. Pharm. Res., 16, 756 (2017).
T. Santhoshkumar, A.A. Rahuman, C. Jayaseelan, G. Rajakumar, S. Marimuthu, A.V. Kirthi, K. Velayutham, J. Thomas, J. Venkatesan and S.-K. Kim, Asian Pac. J. Trop. Med., 7, 968 (2014); https://doi.org/10.1016/S1995-7645(14)60171-1
G. Rajakumar, A.A. Rahuman, S.M. Roopan, I.M. Chung, K. Anbarasan and V. Karthikeyan, Parasitol. Res., 114, 571 (2015); https://doi.org/10.1007/s00436-014-4219-8
N.A. Al-Shabib, F.M. Husain, F.A. Qais, N. Ahmad, A. Khan, A.A. Alyousef, M. Arshad, S. Noor, J.M. Khan, P. Alam, T.H. Albalawi and S.A. Shahzad, Front. Microbiol., 11, 1680 (2020); https://doi.org/10.3389/fmicb.2020.01680.
G. Rajakumar, A.A. Rahuman, C. Jayaseelan, T. Santhoshkumar, S. Marimuthu, C. Kamaraj, A. Bagavan, A.A. Zahir, A.V. Kirthi, G. Elango, P. Arora, R. Karthikeyan, S. Manikandan and S. Jose, Parasitol. Res., 113, 469 (2014); https://doi.org/10.1007/s00436-013-3676-9
K. Thandapani, M. Kathiravan, E. Namasivayam, I.A. Padiksan, G. Natesan, M. Tiwari, B. Giovanni and V. Perumal, Environ. Sci. Pollut. Res. Int., 25, 10328 (2018); https://doi.org/10.1007/s11356-017-9177-0
M. Sundrarajan, K. Bama, M. Bhavani, S. Jegatheeswaran, S. Ambika, A. Sangili, P. Nithya and R. Sumathi, J. Photochem. Photobiol. B,171, 117 (2017); https://doi.org/10.1016/j.jphotobiol.2017.05.003
S. Alghool, H.F. Abd El-Halim and A.M. Mostafa, J. Inorg. Organomet. Polym. Mater., 29, 1324 (2019); https://doi.org/10.1007/s10904-019-01096-1
P. Deepika, H.M. Vinusha, B. Muneera, N.D. Rekha and K. Shiva Prasad, Curr. Res. Green Sustainable Chem., 1-2, 14 (2020); https://doi.org/10.1016/j.crgsc.2020.04.001
K.S. Prasad, C. Shivamallu, G. Shruthi and M. Prasad, Chemistry Select, 3, 3860 (2018); https://doi.org/10.1002/slct.201800653
W. Kang, C. Yan, X. Wang, C.Y. Foo, A.W.M. Tan, K.J.Z. Chee and P.S. Lee, J. Mater. Chem. C, 2, 4727 (2014); https://doi.org/10.1039/C4TC00158C
P. Rasheed, S. Haq, M. Waseem, S. Rehman, W. Rehman, N. Bibi and S.A.A. Shah, Mater. Res. Expr., 7, 2053 (2020); https://doi.org/10.1088/2053-1591/ab6fa2
N. Talavera, M. Navarro, A. Sifontes, Y. Díaz, H. Villalobos, G. Nino-Vega, A. Boada-Sucre and I. Gonzalez, Ed.: S.G. Padalai, Green Synthesis of Nanosized Vanadium Pentoxide using Saccharomyces Cervisiae as Biotemplate, In: Recent Research Developments in Materials Science, Kerala: Research Signpost, vol. 10, Chap. 5, pp. 89-102 (2013).
C. Ramesh, K.T. Mohan Kumar, N. Latha and V. Ragunathan, Curr. Nanosci., 8, 603 (2012); https://doi.org/10.2174/157341312801784366
B.T. Sone, E. Manikandan, A. Gurib-Fakim and M. Maaza, Green Chem. Lett. Rev., 9, 85 (2016); https://doi.org/10.1080/17518253.2016.1151083
P. Sangwan and H. Kumar, Asian J. Pharm. Clin. Res., 10, 206 (2017); https://doi.org/10.22159/ajpcr.2017.v10i2.15189
Z. Ahmad, A. Shamim, S. Mahmood, T. Mahmood and F. Khan, Eng. Appl. Sci. Letts., 1, 23 (2018); https://doi.org/10.30538/psrp-easl2018.0008
J. Iqbal, B.A. Abbasi, A. Munir, S. Uddin, S. Kanwal and T. Mahmood, Microsc. Res. Technol., 83, 706 (2020); https://doi.org/10.1002/jemt.23460
N. Gupta and S.P. Resmi, Imp. J. Interdisciplin. Res., 2, 532 (2016).
N.O.M. Dewi and Y. Yulizar, Mater. Today: Proc., 22, 199 (2020); https://doi.org/10.1016/j.matpr.2019.08.088
H.M. Abuzeid, S.A. Elsherif, N.A. Abdel Ghany and A.M. Hashem, J. Energy Storage, 21, 156 (2019); https://doi.org/10.1016/j.est.2018.11.021
M. Souri, V. Hoseinpour, N. Ghaemi and A. Shakeri, Int. Nano Lett., 9, 73 (2019); https://doi.org/10.1007/s40089-018-0257-z
V. Kumar, K. Singh, S. Panwar and S.K. Mehta, Int. Nano Lett., 7, 123 (2017); https://doi.org/10.1007/s40089-017-0205-3
S.A. Khan, S. Shahid, B. Shahid, U. Fatima and S.A. Abbasi, Biomolecules, 10, 785 (2020); https://doi.org/10.3390/biom10050785
A.V. Ramesh, B. Lavakusa, B.S. Mohan, Y.P. Kumar, D.R. Devi and K. Basavaiah, IOSR J. Appl. Chem., 10, 35 (2017); https://doi.org/10.9790/5736-1007013543
A.V. Samrot, P. Senthilkumar, S. Rashmitha, P. Veera and C.S. Sahithya, J. Nanostruct. Chem., 8, 343 (2018); https://doi.org/10.1007/s40097-018-0279-0
Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B. Bt Ahmad Khairudin, S.E. Bt Mohamad and K.X. Lee, Nanoscale Res. Lett., 11, 276 (2016); https://doi.org/10.1186/s11671-016-1498-2
A. Azizi, J. Inorg. Organomet. Polym., 30, 3552 (2020); https://doi.org/10.1007/s10904-020-01500-1
A.A. Barzinjy, D.A. Abdul, F.H.S. Hussain and S.M. Hamad, Inorg. Nano-Metal Chem., 50, 620 (2020): https://doi.org/10.1080/24701556.2020.1723027
A. Azizi, J. Inorg. Organomet. Polym. Mater., 30, 3552 (2020); https://doi.org/10.1007/s10904-020-01500-1
G. Sathishkumar, V. Logeshwaran, S. Sarathbabu, P.K. Jha, M. Jeyaraj, C. Rajkuberan, N. Senthilkumar and S. Sivaramakrishnan, Artif. Cells Nanomed. Biotechnol., 46, 589 (2018); https://doi.org/10.1080/21691401.2017.1332635
S. Narayanan, B.N. Sathy, U. Mony, M. Koyakutty, S.V. Nair and D. Menon, ACS Appl. Mater. Interfaces, 4, 251 (2012); https://doi.org/10.1021/am201311c
N. Basavegowda, K. Mishra and Y. Lee, RSC Adv., 4, 61660 (2014); https://doi.org/10.1039/C4RA11623B
N. Basavegowda, K.B. Somai Magar, K. Mishra and Y.R. Lee, New J. Chem., 38, 5415 (2014); https://doi.org/10.1039/C4NJ01155D
S. Dubey, J. Kumar, A. Kumar and Y.C. Sharma, Adv. Powder Technol., 29, 2583 (2018); https://doi.org/10.1016/j.apt.2018.03.009
N. Akhlaghi, G. Najafpour-Darzi and H. Younesi, Adv. Powder Technol., 31, 3562 (2020); https://doi.org/10.1016/j.apt.2020.07.004
C.-M. Hsu, Y.-H. Huang, H.-J. Chen, W.-C. Lee, H.-W. Chiu, J.P. Maity, C.-C. Chen, Y.-H. Kuo and C.-Y. Chen, Mater. Today Commun., 14, 302 (2018); https://doi.org/10.1016/j.mtcomm.2018.02.005
D.C. Onwudiwe, M.P. Ravele and E.E. Elemike, Nano-Structures & Nano-Objects, 23, 100470 (2020); https://doi.org/10.1016/j.nanoso.2020.100470
F.S. Razavi, A. Sobhani, O. Amiri, M. Ghiyasiyan-Arani and M. Salavati-Niasari, Int. J. Hydrogen Energy, 45, 17662 (2020); https://doi.org/10.1016/j.ijhydene.2020.04.273
I. Bibi, N. Nazar, M. Iqbal, S. Kamal, H. Nawaz, S. Nouren, Y. Safa, K. Jilani, M. Sultan, S. Ata, F. Rehman and M. Abbas, Adv. Powder Technol., 28, (2017); https://doi.org/10.1016/j.apt.2017.05.008
A.S. Vijayanandan and R.M. Balakrishnan, J. Environ. Manage., 218, 442 (2018); https://doi.org/10.1016/j.jenvman.2018.04.032
T. Rasheed, F. Nabeel, M. Bilal and H.M.N. Iqbal, Biocatal. Agric. Biotechnol., 19, 101154 (2019); https://doi.org/10.1016/j.bcab.2019.101154
A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, X. Zhang and L.J. Kennedy, Surf. Interfaces, 20, 100553 (2020); https://doi.org/10.1016/j.surfin.2020.100553
P. Karpagavinayagam, A. Emi Princess Prasanna and C. Vedhi, Mater. Today Proc., 48, 136 (2022); https://doi.org/10.1016/j.matpr.2020.04.183
M.I. Din, A.G. Nabi, A. Rani, A. Aihetasham and M. Mukhtar, Environ. Nanotechnol. Monit. Manage., 9, 29 (2018); https://doi.org/10.1016/j.enmm.2017.11.005
A.C. Nwanya, M.M. Ndipingwi, C.O. Ikpo, R.M. Obodo, S.C. Nwanya, S. Botha, F.I. Ezema, E.I. Iwuoha and M. Maaza, J. Alloys Compd., 822, 153581 (2020); https://doi.org/10.1016/j.jallcom.2019.153581
F. Ibraheem, M.H. Aziz, M. Fatima, F. Shaheen, S.M. Ali and Q. Huang, Mater. Lett., 234, 129 (2018); https://doi.org/10.1016/j.matlet.2018.09.075
A.A. Ezhilarasi, J.J. Vijaya, L.J. Kennedy and K. Kaviyarasu, Mater. Chem. Phys., 241, 122419 (2020); https://doi.org/10.1016/j.matchemphys.2019.122419
K. Lingaraju, H. Raja Naika, H. Nagabhushana, K. Jayanna, S. Devaraja and G. Nagaraju, Arab. J. Chem., 13, 4712 (2019); https://doi.org/10.1016/j.arabjc.2019.11.003
Z. Sabouri, A. Akbari, H.A. Hosseini, M. Khatami and M. Darroudi, Polyhedron, 178, 114351 (2020); https://doi.org/10.1016/j.poly.2020.114351
S.C. Mali, S. Raj and R. Trivedi, Biochem. Biophys. Rep., 20, 100699 (2019); https://doi.org/10.1016/j.bbrep.2019.100699
M. Rafique, F. Shafiq, S.S. Ali Gillani, M. Shakil, M.B. Tahir and I. Sadaf, Optik, 208, 164053 (2020); https://doi.org/10.1016/j.ijleo.2019.164053
S. Chaudhary, D. Rohilla, A. Umar, N. Kaur and A. Shanavas, Ceram. Int., 45, 15025 (2019); https://doi.org/10.1016/j.ceramint.2019.04.239
A.Y. Ghidan, T.M. Al-Antary and A.M. Awwad, Environ. Nanotechnol. Monitor. Manage., 6, 95 (2016);
https://doi.org/10.1016/j.enmm.2016.08.002
S. Hemmati, L. Mehrazin, M. Hekmati, M. Izadi and H. Veisi, Mater. Chem. Phys., 214, 527 (2018); https://doi.org/10.1016/j.matchemphys.2018.04.114
S. Chakraborty, J.J. Farida, R. Simon, S. Kasthuri and N.L. Mary, Surf. Interfaces, 19, 100488 (2020). https://doi.org/10.1016/j.surfin.2020.100488
M. Ganesh, S.G. Lee, J. Jayaprakash, M. Mohankumar and H.T. Jang, Biocatal. Agric. Biotechnol., 19, 101129 (2019); https://doi.org/10.1016/j.bcab.2019.101129
G.T. Anand, D. Renuka, R. Ramesh, L. Anandaraj, S.J. Sundaram, G. Ramalingam, C.M. Magdalane, A.K.H. Bashir, M. Maaza and K. Kaviyarasu, Surf. Interfaces, 17, 100376 (2019); https://doi.org/10.1016/j.surfin.2019.100376
G. Sharmila, M. Thirumarimurugan and C. Muthukumaran, Microchem. J., 145, 578 (2019); https://doi.org/10.1016/j.microc.2018.11.022
D. Suresh, P.C. Nethravathi, H. Udayabhanu, H. Nagabhushana, H. Rajanaika and S.C. Sharma, Mater. Sci. Semicond. Process., 31, 446 (2015); https://doi.org/10.1016/j.mssp.2014.12.023
A. Diallo, B.D. Ngom, E. Park and M. Maaza, J. Alloys Compd., 646, 425 (2015); https://doi.org/10.1016/j.jallcom.2015.05.242
F.T. Thema, E. Manikandan, M.S. Dhlamini and M. Maaza, Mater. Lett., 161, 124 (2015); https://doi.org/10.1016/j.matlet.2015.08.052
M.S. Geetha, H. Nagabhushana and H.N. Shivananjaiah, J. Sci.: Adv. Mater. Devices, 1, 301 (2016); https://doi.org/10.1016/j.jsamd.2016.06.015
M. Ramesh, M. Anbuvannan and G. Viruthagiri, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 864 (2015); https://doi.org/10.1016/j.saa.2014.09.105
J. Ruangtong, J. T-Thienprasert and N.P. T-Thienprasert, Mater. Today Commun., 24, 101224 (2020); https://doi.org/10.1016/j.mtcomm.2020.101224