Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Characterization and Antibacterial Activity of Cu doped ZnO Thin Film Prepared by Sol-Gel Dip Coating Method and Phytosynthesized Zinc Oxide Nanoparticles from Senna alata and Euphorbia hirta
Corresponding Author(s) : R. Sumalatha
Asian Journal of Chemistry,
Vol. 34 No. 10 (2022): Vol 34 Issue 10, 2022
Abstract
Zinc oxide nanoparticles exhibit significant antibacterial activity. The present study focused on determining the antibacterial activity of green synthetic zinc oxide nanoparticles (ZnO NPs) and Cu doped ZnO thin film. The prepared ZnO NPs and Cu doped ZnO films were characterized by XRD analysis, SEM, FTIR and UV-vis. Amorphous and nano cluster shapes were observed in SEM analysis. The presence of different chemical functional groups was confirmed by FTIR analysis. The optical properties Cu doped ZnO nanostructures were analyzed by UV-visible analysis. The results clearly confirmed the efficient synthesis of spherical ZnO nanoparticles with average size range from 40 to 50 nm. The Cu doped ZnO thin films and ZnO nanoparticles showed dose-dependent antibacterial activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Salmonella typhi and Pseudomonas aeruginosa. The IC50 value was calculated as approximately 60 μg/mL. Growth kinetics studies were performed in the presence of ZnO nanoparticles demonstrated the bacteriostatic effect of ZnO nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kolodziejczak-Radzimska and T. Jesionowski, Materials, 7, 2833 (2014); https://doi.org/10.3390/ma7042833
- D. Sharma, S. Sharma, B.S. Kaith, J. Rajput and M. Kaur, Appl. Surf. Sci., 257, 9661 (2011); https://doi.org/10.1016/j.apsusc.2011.06.094
- W. Feng, P. Huang, B. Wang, C. Wang, W. Wang, T. Wang, S. Chen, R. Lv, Y. Qin and J. Ma, Ceram. Int., 42, 2250 (2016); https://doi.org/10.1016/j.ceramint.2015.10.018
- R. Mohan, K. Krishnamoorthy and S.J. Kim, Chem. Phys. Lett., 539– 540, 83 (2012); https://doi.org/10.1016/j.cplett.2012.04.054
- S. Muthukumaran and R. Gopalakrishnan, Opt. Mater., 34, 1946 (2012); https://doi.org/10.1016/j.optmat.2012.06.004
- S.A. Khayatian, A. Kompany, N. Shahtahmassebi and A.K. Zak, Ceram. Int., 42, 110 (2016); https://doi.org/10.1016/j.ceramint.2015.08.008
- R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang and S.H. Kim, Ceram. Int., 41, 7773 (2015); https://doi.org/10.1016/j.ceramint.2015.02.110
- M.F. Al-Ajmi, A. Hussain and F. Ahmed, Ceram. Int., 42, 4462 (2016); https://doi.org/10.1016/j.ceramint.2015.11.133
- L. Zhifeng, L. Chengcheng, Y. Jing and E. Lei, Solid State Sci., 12, 111 (2010); https://doi.org/10.1016/j.solidstatesciences.2009.10.014
- C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong and J.X. Wang, Appl. Phys. Lett., 90, 263501 (2007); https://doi.org/10.1063/1.2751588
- Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu and M. Lin, J. Appl. Microbiol., 107, 1193 (2009); https://doi.org/10.1111/j.1365-2672.2009.04303.x
- K.S. Siddiqi, A. ur Rahman, Tajuddin and A. Husen, Nanoscale Res. Lett., 13, 141 (2018); https://doi.org/10.1186/s11671-018-2532-3
- N. Babayevska, L. Przysiecka, I. Iatsunskyi, G. Nowaczyk, M. Jarek, E. Janiszewska and S. Jurga, Sci. Rep., 12, 8148 (2022); https://doi.org/10.1038/s41598-022-12134-3
- H. Agarwal, Happy, S. Menon, S.V. Kumar, S.R. Kumar, R.D. Sheba, T. Lakshmi and V.D. Nallaswamy, Biochem. Biophys. Rep., 17, 208 (2019); https://doi.org/10.1016/j.bbrep.2019.01.002
- M.N. Somchita, I. Reezal, I.E.Nura and A.R. Mutalib, J. Ethnopharmacol., 84, 1 (2003); https://doi.org/10.1016/S0378-8741(02)00146-0
- O. Adedayo, W.A. Anderson, M. Moo-Young, V. Snieckus, P.A. Patil and D.O. Kolawole, Pharm. Biol., 39, 408 (2008); https://doi.org/10.1076/phbi.39.6.408.5880
- A. Annamalai, V.L.P. Christina, D. Sudha, M. Kalpana and P.T.V. Lakshmi, Colloids Surf. B, 108, 60 (2013); https://doi.org/10.1016/j.colsurfb.2013.02.012
- E.-M.M. Abubakar, J. Med. Plants Res., 3, 498 (2009).
- G. Singh and P. Kumar, Int. J. Appl. Basic Med. Res., 3, 111 (2013); https://doi.org/10.4103/2229-516X.117082
- M.M. Khan, M.H. Harunsani, A.L. Tan, M. Hojamberdiev, Y.A. Poi and N. Ahmad, BioNanoSci., 10, 1037 (2020); https://doi.org/10.1007/s12668-020-00775-5
- M.K. Debanath, R.K. Saha, S.M. Borah, E. Saikia and K.K. Saikia, Adv. Mater. Proc., 3, 36 (2018); https://doi.org/10.5185/amp.2018/721
- D.T. Handago, E.A. Zereffa and B.A. Gonfa, Open Chem., 17, 246 (2019); https://doi.org/10.1515/chem-2019-0018
References
A. Kolodziejczak-Radzimska and T. Jesionowski, Materials, 7, 2833 (2014); https://doi.org/10.3390/ma7042833
D. Sharma, S. Sharma, B.S. Kaith, J. Rajput and M. Kaur, Appl. Surf. Sci., 257, 9661 (2011); https://doi.org/10.1016/j.apsusc.2011.06.094
W. Feng, P. Huang, B. Wang, C. Wang, W. Wang, T. Wang, S. Chen, R. Lv, Y. Qin and J. Ma, Ceram. Int., 42, 2250 (2016); https://doi.org/10.1016/j.ceramint.2015.10.018
R. Mohan, K. Krishnamoorthy and S.J. Kim, Chem. Phys. Lett., 539– 540, 83 (2012); https://doi.org/10.1016/j.cplett.2012.04.054
S. Muthukumaran and R. Gopalakrishnan, Opt. Mater., 34, 1946 (2012); https://doi.org/10.1016/j.optmat.2012.06.004
S.A. Khayatian, A. Kompany, N. Shahtahmassebi and A.K. Zak, Ceram. Int., 42, 110 (2016); https://doi.org/10.1016/j.ceramint.2015.08.008
R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang and S.H. Kim, Ceram. Int., 41, 7773 (2015); https://doi.org/10.1016/j.ceramint.2015.02.110
M.F. Al-Ajmi, A. Hussain and F. Ahmed, Ceram. Int., 42, 4462 (2016); https://doi.org/10.1016/j.ceramint.2015.11.133
L. Zhifeng, L. Chengcheng, Y. Jing and E. Lei, Solid State Sci., 12, 111 (2010); https://doi.org/10.1016/j.solidstatesciences.2009.10.014
C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong and J.X. Wang, Appl. Phys. Lett., 90, 263501 (2007); https://doi.org/10.1063/1.2751588
Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu and M. Lin, J. Appl. Microbiol., 107, 1193 (2009); https://doi.org/10.1111/j.1365-2672.2009.04303.x
K.S. Siddiqi, A. ur Rahman, Tajuddin and A. Husen, Nanoscale Res. Lett., 13, 141 (2018); https://doi.org/10.1186/s11671-018-2532-3
N. Babayevska, L. Przysiecka, I. Iatsunskyi, G. Nowaczyk, M. Jarek, E. Janiszewska and S. Jurga, Sci. Rep., 12, 8148 (2022); https://doi.org/10.1038/s41598-022-12134-3
H. Agarwal, Happy, S. Menon, S.V. Kumar, S.R. Kumar, R.D. Sheba, T. Lakshmi and V.D. Nallaswamy, Biochem. Biophys. Rep., 17, 208 (2019); https://doi.org/10.1016/j.bbrep.2019.01.002
M.N. Somchita, I. Reezal, I.E.Nura and A.R. Mutalib, J. Ethnopharmacol., 84, 1 (2003); https://doi.org/10.1016/S0378-8741(02)00146-0
O. Adedayo, W.A. Anderson, M. Moo-Young, V. Snieckus, P.A. Patil and D.O. Kolawole, Pharm. Biol., 39, 408 (2008); https://doi.org/10.1076/phbi.39.6.408.5880
A. Annamalai, V.L.P. Christina, D. Sudha, M. Kalpana and P.T.V. Lakshmi, Colloids Surf. B, 108, 60 (2013); https://doi.org/10.1016/j.colsurfb.2013.02.012
E.-M.M. Abubakar, J. Med. Plants Res., 3, 498 (2009).
G. Singh and P. Kumar, Int. J. Appl. Basic Med. Res., 3, 111 (2013); https://doi.org/10.4103/2229-516X.117082
M.M. Khan, M.H. Harunsani, A.L. Tan, M. Hojamberdiev, Y.A. Poi and N. Ahmad, BioNanoSci., 10, 1037 (2020); https://doi.org/10.1007/s12668-020-00775-5
M.K. Debanath, R.K. Saha, S.M. Borah, E. Saikia and K.K. Saikia, Adv. Mater. Proc., 3, 36 (2018); https://doi.org/10.5185/amp.2018/721
D.T. Handago, E.A. Zereffa and B.A. Gonfa, Open Chem., 17, 246 (2019); https://doi.org/10.1515/chem-2019-0018