Copyright (c) 2026 NIVETHA SUNDHARAJ, ROSALINE VIMALA J, DEVADHARSHINI AMALA A, ANITHA IMMACULATE A

This work is licensed under a Creative Commons Attribution 4.0 International License.
Rutin-Mediated Synthesis of Zr-Mg@N-rGO Nanocomposites with Potent Antioxidant and Antimicrobial Activities
Corresponding Author(s) : J. Rosaline Vimala
Asian Journal of Chemistry,
Vol. 38 No. 2 (2026): Vol 38 Issue 2, 2026
Abstract
In present study, a novel Zr-Mg@N-doped reduced graphene oxide (N-rGO) nanocomposite was synthesized using a green, sustainable approach. Rutin, a natural polyphenolic flavonoid, was employed as a reducing and stabilizing agent, enabling the eco-friendly fabrication of the nanocomposite without the use of harsh chemicals. The synthesized material was thoroughly characterized using multiple techniques. UV-visible spectroscopy confirmed nanoparticle formation and optical properties; FT-IR analysis revealed the presence of functional groups associated with rutin and metal-oxygen bonds; XRD patterns indicated the crystalline nature of ZrO2 and MgO phases embedded within the rGO matrix; SEM and EDAX analyses confirmed the morphological features and elemental composition, while DLS and zeta potential measurements indicated good colloidal stability and moderate mono dispersity. The nanocomposite exhibited significant bacterial (Actinomyces israelii, Proteus vulgaris) and fungal (Candida albicans, Trichoderma) pathogens with increasing inhibition zones observed at higher concentrations. Antioxidant potential was evaluated via DPPH, H2O2 and NO assays, where the nanocomposite demonstrated dose-dependent free radical scavenging activity, attributed to the presence of rutin and synergistic metal-oxide interaction. Overall, the synthesized Zr-Mg@N-rGO nanocomposite offers a multifunctional platform with potential applications in biomedical, environmental and optoelectronic fields.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.A.A. Abdullah, H. Ali Mohammed, C. Salmi, Z. Alqarni, S. Eddine Laouini, A. Guerrero and A. Romero, Bioorg. Chem., 153, 107828 (2024); https://doi.org/10.1016/j.bioorg.2024.107828
- S.R.A. Kumar, D.V. Mary, G.A.S. Josephine and M.A.R. Ahamed, Hybrid Adv., 5, 100168 (2024); https://doi.org/10.1016/j.hybadv.2024.100168
- H.-C. Youn, S.-M. Bak, M.-S. Kim, C. Jaye, D. A. Fischer, C.-W. Lee, X.-Q. Yang, K.C. Roh and K.-B. Kim, ChemSusChem, 8, 1875 (2015); https://doi.org/10.1002/cssc.201500122
- S. Sagadevan, Z.Z. Chowdhury, M.E. Hoque and J. Podder, Mater. Res. Express, 4, 115031 (2017); https://doi.org/10.1088/2053-1591/aa9a8c
- F. Liu, Z. Wang, X. Du, S. Li and W. Du, Materials, 16, 2303 (2023); https://doi.org/10.3390/ma16062303
- M. Ghafori-Gorab, A. Kashtiaray, M. Karimi, H.A.M. Aliabadi, F. Bakhtiyar, F.D. Ghadikolaei, M. Mohajeri and A. Maleki, Chem. Eng. J., 505, 159464 (2025); https://doi.org/10.1016/j.cej.2025.159464
- G. Srinivasan, A. Manickam, S. Sivakumar, J. Murugan, S. Elangomannan and S. Mohan, J. Mater. Sci.: Mater. Eng., 20, 76 (2025); https://doi.org/10.1186/s40712-025-00294-9
- V. Cepeda, M. Ródenas-Munar, S. García, C. Bouzas and J.A. Tur, Antioxidants, 14, 740 (2025); https://doi.org/10.3390/antiox14060740
- G. Fatima, A. Dzupina, H.B. Alhmadi, A. Magomedova, Z. Siddiqui, A. Mehdi and N. Hadi, Cureus, 16, e71392 (2024); https://doi.org/10.7759/cureus.71392
- S. Qamar, N. Ramzan and W. Aleem, Synth. Met., 307, 117697 (2024); https://doi.org/10.1016/j.synthmet.2024.117697
- R. Darabi, F.E.D. Alown, A. Aygun, Q. Gu, F. Gulbagca, E.E. Altuner, H. Seckin, I. Meydan, G. Kaymak, F. Sen and H. Karimi-Maleh, Int. J. Hydrogen Energy, 48, 21270 (2023); https://doi.org/10.1016/j.ijhydene.2022.12.072
- P. Salehpour and A. Abri, Colloids Surf. B: Biointerfaces, 220, 112903 (2022); https://doi.org/10.1016/j.colsurfb.2022.112903
- Y. Peng, M. Liao, X. Ma, H. Deng, F. Gao, R. Dai and L. Lu, Int. J. Electrochem. Sci., 14, 4946 (2019); https://doi.org/10.20964/2019.06.28
- H.R. Tantawy, A.A. Nada, A. Baraka and M.A. Elsayed, Appl. Surf. Sci. Adv., 3, 100056 (2021); https://doi.org/10.1016/j.apsadv.2021.100056
- A.P. Ayanwale, B.L. Estrada-Capetillo and S.Y. Reyes-López, Inorg. Chem. Commun., 134, 108954 (2021); https://doi.org/10.1016/j.inoche.2021.108954
- Z.M. Mohammedsaleh and F.M. Saleh, J. Drug Deliv. Sci. Technol., 83, 104397 (2023); https://doi.org/10.1016/j.jddst.2023.104397
- R. Sanjinés, M.D. Abad, C. Vâju, R. Smajda, M. Mionić and A. Magrez, Surf. Coat. Technol., 206, 727 (2011); https://doi.org/10.1016/j.surfcoat.2011.01.025
- B. Murtaza, A. Naseer, M. Imran, N. Shah, A.A. Al-Kahtani, Z.A. ALOthman, M. Shahid, J. Iqbal, G. Abbas, N. Natasha and M. Amjad, Environ. Geochem. Health, 45, 9003 (2023); https://doi.org/10.1007/s10653-023-01630-8
- C.E. Zou, J. Zhong, S. Li, H. Wang, J. Wang, B. Yan and Y. Du, J. Electroanal. Chem., 805, 110 (2017); https://doi.org/10.1016/j.jelechem.2017.10.020
- M.I. Alghonaim, S.A. Alsalamah, A.M. Mohammad and T.M. Abdelghany, Biomass Convers. Biorefin., 15, 6767 (2025); https://doi.org/10.1007/s13399-024-05451-2
- M. Ashrafizadeh, H. Saebfar, M.H. Gholami, K. Hushmandi, A. Zabolian, P. Bikarannejad, M. Hashemi, S. Daneshi, S. Mirzaei, E. Sharifi, A.P. Kumar, H. Khan, H.H.S. Hossein, M. Vosough, N. Rabiee, V.K. Thakur, P. Makvandi, Y.K. Mishra, F.R. Tay, Y. Wang, A. Zarrabi, G. Orive and E. Mostafavi, Expert Opin. Drug Deliv., 19, 355 (2022); https://doi.org/10.1080/17425247.2022.2041598
- M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
- Y. Liu, G. Tortora, M.E. Ryan, H.-M. Lee and L.M. Golub, Antimicrob. Agents Chemother., 46, 1455 (2002); https://doi.org/10.1128/AAC.46.5.1455-1461.2002
- J. Flieger, N. Żuk, E. Grabias-Blicharz, P. Puźniak and W. Flieger, Antioxidants, 14, n1506 (2025); https://doi.org/10.3390/antiox14121506
- N.G. Dlamini, A.K. Basson and V.S.R. Pullabhotla, Appl. Nano, 4, 1 (2023); https://doi.org/10.3390/applnano4010001
- P. Srinoi, Y.T. Chen, V. Vittur, M.D. Marquez and T.R. Lee, Appl. Sci., 8, 1106 (2018); https://doi.org/10.3390/app8071106
- M.E. Khan, M.M. Khan and M.H. Cho, New J. Chem., 39, 8121 (2015); https://doi.org/10.1039/C5NJ01320H
- A. Khanmohammadi, V. Rashidi and S. Sadighian, Biointerface Res. Appl. Chem., 13, 383 (2023); https://doi.org/10.33263/BRIAC134.383392
- D. Medina-Cruz, B. Saleh, A. Vernet-Crua, A. Nieto-Argüello, D. Lomelí-Marroquín, L.Y. Vélez-Escamilla, J.L. Cholula-Díaz, J.M. García-Martín and T. Webster, in eds.: B. Li, T. Moriarty, T. Webster and M. Xing, Bimetallic Nanoparticles for Biomedical Applications: A Review, In: Racing for the Surface. Springer, Cham., pp. 397-434 (2020).
- Y. Qiu, Z. Wang, A.C. Owens, I. Kulaots, Y. Chen, A.B. Kane and R.H. Hurt, Nanoscale, 6, 11744 (2014); https://doi.org/10.1039/C4NR03275F
- S. Bera, M. Ghosh, M. Pal, N. Das, S. Saha, S.K. Dutta and S. Jana, RSC Adv., 4, 37479 (2014); https://doi.org/10.1039/C4RA06243D
- F. Fu, Z. Cheng and J. Lu, RSC Adv., 5, 85395 (2015); https://doi.org/10.1039/C5RA13067K
- C. Wang, B. Li, W. Niu, S. Hong, B. Saif, S. Wang, C. Dong and S. Shuang, RSC Adv., 5, 89299 (2015); https://doi.org/10.1039/C5RA13082D
- H. Ghadimi, B. Nasiri-Tabrizi, P.M. Nia, W.J. Basirun, R.M. Tehrani and F. Lorestani, RSC Adv., 5, 99555 (2015); https://doi.org/10.1039/C5RA18109G
- G. Darabdhara, M.A. Amin, G.A.M. Mersal, E.M. Ahmed, M.R. Das, M.B. Zakaria, V. Malgras, S.M. Alshehri, Y. Yamauchi, S. Szunerits and R. Boukherroub, J. Mater. Chem. A Mater. Energy Sustain., 3, 20254 (2015); https://doi.org/10.1039/C5TA05730B
- A.S. Siddiqui, M.A. Ahmad, M.H. Nawaz, A. Hayat and M. Nasir, Catalysts, 12, 1105 (2022); https://doi.org/10.3390/catal12101105
- A. Ghamkhari, S. Abbaspour-Ravasjani, M. Talebi, H. Hamishehkar and M.R. Hamblin, Int. J. Biol. Macromol., 169, 521 (2021); https://doi.org/10.1016/j.ijbiomac.2020.12.084
- S. Pattnaik, K. Swain and Z. Lin, J. Mater. Chem. B Mater. Biol. Med., 4, 7813 (2016); https://doi.org/10.1039/C6TB02086K
- C.M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R.C. Advincula and D.F. Rodrigues, Nanotechnology, 23, 395101 (2012); https://doi.org/10.1088/0957-4484/23/39/395101
- A. Ahmad, A.S. Qureshi, L. Li, J. Bao, X. Jia, Y. Xu and X. Guo, Colloids Surf. B Biointerfaces, 143, 490 (2016); https://doi.org/10.1016/j.colsurfb.2016.03.065
- R.M. Fathy and A.Y. Mahfouz, J. Nanostructure Chem., 11, 301 (2021); https://doi.org/10.1007/s40097-020-00369-3
- I. Kritika and I. Roy, Mater. Adv., 3, 7425 (2022); https://doi.org/10.1039/D2MA00444E
- A. Abedini, M. Rostami, H.R. Banafshe, M. Rahimi-Nasrabadi, A. SobhaniNasab and M.R. Ganjali, Front Chem., 10, 893793 (2022); https://doi.org/10.3389/fchem.2022.893793
- N. Matinise, N. Mayedwa, K. Kaviyarasu, Z.Y. Nuru, I.G. Madiba, N. Mongwaketsi, X. Fuku and M. Maaza, Mater. Today Proc., 36, 401 (2021); https://doi.org/10.1016/j.matpr.2020.04.743
- Z. Hao, M. Wang, L. Cheng, M. Si, Z. Feng and Z. Feng, Front. Bioeng. Biotechnol., 11, 1337543 (2024); https://doi.org/10.3389/fbioe.2023.1337543
- P. Ranga Reddy, K. Varaprasad, N. Narayana Reddy, K. Mohana Raju and N.S. Reddy, J. Appl. Polym. Sci., 125, 1357 (2012); https://doi.org/10.1002/app.35192
- M. Das, U. Goswami, R. Kandimalla, S. Kalita, S.S. Ghosh and A. Chattopadhyay, ACS Appl. Bio Mater., 2, 5434 (2019); https://doi.org/10.1021/acsabm.9b00870
- F. Ali, S.B. Khan, T. Kamal, Y. Anwar, K.A. Alamry and A.M. Asiri, Chemosphere, 188, 588 (2017); https://doi.org/10.1016/j.chemosphere.2017.08.118
- T. Doolotkeldieva, S. Bobusheva, Z. Zhasnakunov and A. Satybaldiev, J. Nanomater., 2022, 1190280 (2022); https://doi.org/10.1155/2022/1190280
- C.G. Ugwuja, O.O. Adelowo, A. Ogunlaja, M.O. Omorogie, O.D. Olukanni, O.O. Ikhimiukor, I. Iermak, G.A. Kolawole, C. Guenter, A. Taubert, O. Bodede, R. Moodley, N.M. Inada, A.S.S. De Camargo and E.I. Unuabonah, ACS Appl. Mater. Interfaces, 11, 25483 (2019); https://doi.org/10.1021/acsami.9b01212
References
J.A.A. Abdullah, H. Ali Mohammed, C. Salmi, Z. Alqarni, S. Eddine Laouini, A. Guerrero and A. Romero, Bioorg. Chem., 153, 107828 (2024); https://doi.org/10.1016/j.bioorg.2024.107828
S.R.A. Kumar, D.V. Mary, G.A.S. Josephine and M.A.R. Ahamed, Hybrid Adv., 5, 100168 (2024); https://doi.org/10.1016/j.hybadv.2024.100168
H.-C. Youn, S.-M. Bak, M.-S. Kim, C. Jaye, D. A. Fischer, C.-W. Lee, X.-Q. Yang, K.C. Roh and K.-B. Kim, ChemSusChem, 8, 1875 (2015); https://doi.org/10.1002/cssc.201500122
S. Sagadevan, Z.Z. Chowdhury, M.E. Hoque and J. Podder, Mater. Res. Express, 4, 115031 (2017); https://doi.org/10.1088/2053-1591/aa9a8c
F. Liu, Z. Wang, X. Du, S. Li and W. Du, Materials, 16, 2303 (2023); https://doi.org/10.3390/ma16062303
M. Ghafori-Gorab, A. Kashtiaray, M. Karimi, H.A.M. Aliabadi, F. Bakhtiyar, F.D. Ghadikolaei, M. Mohajeri and A. Maleki, Chem. Eng. J., 505, 159464 (2025); https://doi.org/10.1016/j.cej.2025.159464
G. Srinivasan, A. Manickam, S. Sivakumar, J. Murugan, S. Elangomannan and S. Mohan, J. Mater. Sci.: Mater. Eng., 20, 76 (2025); https://doi.org/10.1186/s40712-025-00294-9
V. Cepeda, M. Ródenas-Munar, S. García, C. Bouzas and J.A. Tur, Antioxidants, 14, 740 (2025); https://doi.org/10.3390/antiox14060740
G. Fatima, A. Dzupina, H.B. Alhmadi, A. Magomedova, Z. Siddiqui, A. Mehdi and N. Hadi, Cureus, 16, e71392 (2024); https://doi.org/10.7759/cureus.71392
S. Qamar, N. Ramzan and W. Aleem, Synth. Met., 307, 117697 (2024); https://doi.org/10.1016/j.synthmet.2024.117697
R. Darabi, F.E.D. Alown, A. Aygun, Q. Gu, F. Gulbagca, E.E. Altuner, H. Seckin, I. Meydan, G. Kaymak, F. Sen and H. Karimi-Maleh, Int. J. Hydrogen Energy, 48, 21270 (2023); https://doi.org/10.1016/j.ijhydene.2022.12.072
P. Salehpour and A. Abri, Colloids Surf. B: Biointerfaces, 220, 112903 (2022); https://doi.org/10.1016/j.colsurfb.2022.112903
Y. Peng, M. Liao, X. Ma, H. Deng, F. Gao, R. Dai and L. Lu, Int. J. Electrochem. Sci., 14, 4946 (2019); https://doi.org/10.20964/2019.06.28
H.R. Tantawy, A.A. Nada, A. Baraka and M.A. Elsayed, Appl. Surf. Sci. Adv., 3, 100056 (2021); https://doi.org/10.1016/j.apsadv.2021.100056
A.P. Ayanwale, B.L. Estrada-Capetillo and S.Y. Reyes-López, Inorg. Chem. Commun., 134, 108954 (2021); https://doi.org/10.1016/j.inoche.2021.108954
Z.M. Mohammedsaleh and F.M. Saleh, J. Drug Deliv. Sci. Technol., 83, 104397 (2023); https://doi.org/10.1016/j.jddst.2023.104397
R. Sanjinés, M.D. Abad, C. Vâju, R. Smajda, M. Mionić and A. Magrez, Surf. Coat. Technol., 206, 727 (2011); https://doi.org/10.1016/j.surfcoat.2011.01.025
B. Murtaza, A. Naseer, M. Imran, N. Shah, A.A. Al-Kahtani, Z.A. ALOthman, M. Shahid, J. Iqbal, G. Abbas, N. Natasha and M. Amjad, Environ. Geochem. Health, 45, 9003 (2023); https://doi.org/10.1007/s10653-023-01630-8
C.E. Zou, J. Zhong, S. Li, H. Wang, J. Wang, B. Yan and Y. Du, J. Electroanal. Chem., 805, 110 (2017); https://doi.org/10.1016/j.jelechem.2017.10.020
M.I. Alghonaim, S.A. Alsalamah, A.M. Mohammad and T.M. Abdelghany, Biomass Convers. Biorefin., 15, 6767 (2025); https://doi.org/10.1007/s13399-024-05451-2
M. Ashrafizadeh, H. Saebfar, M.H. Gholami, K. Hushmandi, A. Zabolian, P. Bikarannejad, M. Hashemi, S. Daneshi, S. Mirzaei, E. Sharifi, A.P. Kumar, H. Khan, H.H.S. Hossein, M. Vosough, N. Rabiee, V.K. Thakur, P. Makvandi, Y.K. Mishra, F.R. Tay, Y. Wang, A. Zarrabi, G. Orive and E. Mostafavi, Expert Opin. Drug Deliv., 19, 355 (2022); https://doi.org/10.1080/17425247.2022.2041598
M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
Y. Liu, G. Tortora, M.E. Ryan, H.-M. Lee and L.M. Golub, Antimicrob. Agents Chemother., 46, 1455 (2002); https://doi.org/10.1128/AAC.46.5.1455-1461.2002
J. Flieger, N. Żuk, E. Grabias-Blicharz, P. Puźniak and W. Flieger, Antioxidants, 14, n1506 (2025); https://doi.org/10.3390/antiox14121506
N.G. Dlamini, A.K. Basson and V.S.R. Pullabhotla, Appl. Nano, 4, 1 (2023); https://doi.org/10.3390/applnano4010001
P. Srinoi, Y.T. Chen, V. Vittur, M.D. Marquez and T.R. Lee, Appl. Sci., 8, 1106 (2018); https://doi.org/10.3390/app8071106
M.E. Khan, M.M. Khan and M.H. Cho, New J. Chem., 39, 8121 (2015); https://doi.org/10.1039/C5NJ01320H
A. Khanmohammadi, V. Rashidi and S. Sadighian, Biointerface Res. Appl. Chem., 13, 383 (2023); https://doi.org/10.33263/BRIAC134.383392
D. Medina-Cruz, B. Saleh, A. Vernet-Crua, A. Nieto-Argüello, D. Lomelí-Marroquín, L.Y. Vélez-Escamilla, J.L. Cholula-Díaz, J.M. García-Martín and T. Webster, in eds.: B. Li, T. Moriarty, T. Webster and M. Xing, Bimetallic Nanoparticles for Biomedical Applications: A Review, In: Racing for the Surface. Springer, Cham., pp. 397-434 (2020).
Y. Qiu, Z. Wang, A.C. Owens, I. Kulaots, Y. Chen, A.B. Kane and R.H. Hurt, Nanoscale, 6, 11744 (2014); https://doi.org/10.1039/C4NR03275F
S. Bera, M. Ghosh, M. Pal, N. Das, S. Saha, S.K. Dutta and S. Jana, RSC Adv., 4, 37479 (2014); https://doi.org/10.1039/C4RA06243D
F. Fu, Z. Cheng and J. Lu, RSC Adv., 5, 85395 (2015); https://doi.org/10.1039/C5RA13067K
C. Wang, B. Li, W. Niu, S. Hong, B. Saif, S. Wang, C. Dong and S. Shuang, RSC Adv., 5, 89299 (2015); https://doi.org/10.1039/C5RA13082D
H. Ghadimi, B. Nasiri-Tabrizi, P.M. Nia, W.J. Basirun, R.M. Tehrani and F. Lorestani, RSC Adv., 5, 99555 (2015); https://doi.org/10.1039/C5RA18109G
G. Darabdhara, M.A. Amin, G.A.M. Mersal, E.M. Ahmed, M.R. Das, M.B. Zakaria, V. Malgras, S.M. Alshehri, Y. Yamauchi, S. Szunerits and R. Boukherroub, J. Mater. Chem. A Mater. Energy Sustain., 3, 20254 (2015); https://doi.org/10.1039/C5TA05730B
A.S. Siddiqui, M.A. Ahmad, M.H. Nawaz, A. Hayat and M. Nasir, Catalysts, 12, 1105 (2022); https://doi.org/10.3390/catal12101105
A. Ghamkhari, S. Abbaspour-Ravasjani, M. Talebi, H. Hamishehkar and M.R. Hamblin, Int. J. Biol. Macromol., 169, 521 (2021); https://doi.org/10.1016/j.ijbiomac.2020.12.084
S. Pattnaik, K. Swain and Z. Lin, J. Mater. Chem. B Mater. Biol. Med., 4, 7813 (2016); https://doi.org/10.1039/C6TB02086K
C.M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R.C. Advincula and D.F. Rodrigues, Nanotechnology, 23, 395101 (2012); https://doi.org/10.1088/0957-4484/23/39/395101
A. Ahmad, A.S. Qureshi, L. Li, J. Bao, X. Jia, Y. Xu and X. Guo, Colloids Surf. B Biointerfaces, 143, 490 (2016); https://doi.org/10.1016/j.colsurfb.2016.03.065
R.M. Fathy and A.Y. Mahfouz, J. Nanostructure Chem., 11, 301 (2021); https://doi.org/10.1007/s40097-020-00369-3
I. Kritika and I. Roy, Mater. Adv., 3, 7425 (2022); https://doi.org/10.1039/D2MA00444E
A. Abedini, M. Rostami, H.R. Banafshe, M. Rahimi-Nasrabadi, A. SobhaniNasab and M.R. Ganjali, Front Chem., 10, 893793 (2022); https://doi.org/10.3389/fchem.2022.893793
N. Matinise, N. Mayedwa, K. Kaviyarasu, Z.Y. Nuru, I.G. Madiba, N. Mongwaketsi, X. Fuku and M. Maaza, Mater. Today Proc., 36, 401 (2021); https://doi.org/10.1016/j.matpr.2020.04.743
Z. Hao, M. Wang, L. Cheng, M. Si, Z. Feng and Z. Feng, Front. Bioeng. Biotechnol., 11, 1337543 (2024); https://doi.org/10.3389/fbioe.2023.1337543
P. Ranga Reddy, K. Varaprasad, N. Narayana Reddy, K. Mohana Raju and N.S. Reddy, J. Appl. Polym. Sci., 125, 1357 (2012); https://doi.org/10.1002/app.35192
M. Das, U. Goswami, R. Kandimalla, S. Kalita, S.S. Ghosh and A. Chattopadhyay, ACS Appl. Bio Mater., 2, 5434 (2019); https://doi.org/10.1021/acsabm.9b00870
F. Ali, S.B. Khan, T. Kamal, Y. Anwar, K.A. Alamry and A.M. Asiri, Chemosphere, 188, 588 (2017); https://doi.org/10.1016/j.chemosphere.2017.08.118
T. Doolotkeldieva, S. Bobusheva, Z. Zhasnakunov and A. Satybaldiev, J. Nanomater., 2022, 1190280 (2022); https://doi.org/10.1155/2022/1190280
C.G. Ugwuja, O.O. Adelowo, A. Ogunlaja, M.O. Omorogie, O.D. Olukanni, O.O. Ikhimiukor, I. Iermak, G.A. Kolawole, C. Guenter, A. Taubert, O. Bodede, R. Moodley, N.M. Inada, A.S.S. De Camargo and E.I. Unuabonah, ACS Appl. Mater. Interfaces, 11, 25483 (2019); https://doi.org/10.1021/acsami.9b01212