Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxidation Possibility of Manganese Dioxide Under Ambient Conditions
Corresponding Author(s) : Trinh Xuan Dai
Asian Journal of Chemistry,
Vol. 27 No. 2 (2015): Vol 27 Issue 2
Abstract
Fresh manganese dioxide material was prepared by soaking of pyrolusite grains in HCl solution to dissolve Fe(III) and Mn(II) ions to solution, then MnO2 and FeOOH were relied on oxidation and precipitation reactions to be coating back on the pyrolusite grains surface. The material was used for investigation of methylene blue oxidation process in water solution. In room temperature and at ambient pressure methylene blue was oxidized and decolourized in large range of pH value. The results showed that in acidic solution the manganese dioxide directly oxidize methylene blue and reduced itself into Mn(II) cation. In alkaline solution, manganese dioxide plays the role as an oxidation catalyst to oxidize methylene blue in presence of OH– ions and atmospheric oxygen. The mechanism of oxidation processes was also described.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.D. Lou and Z.N. Xu, Tetrahedron Lett., 43, 6149 (2002); doi:10.1016/S0040-4039(02)01345-X.
- L.E. Eary and D. Rai, Environ. Sci. Technol., 21, 1187 (1987); doi:10.1021/es00165a005.
- Q. Ye, J. Zhao, F. Huo, J. Wang, S. Cheng, T. Kang and H. Dai, Catal. Today, 175, 603 (2011); doi:10.1016/j.cattod.2011.04.008.
- American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, Washington DC, USA, edn. 20 (1998).
- K. Wu, T. Liu, W. Xue and X.C. Wang, Chem. Eng. J., 192, 343 (2012); doi:10.1016/j.cej.2012.03.058.
- P.M. Jardine and D.L. Taylor, Geochim. Cosmochim. Acta, 59, 4193 (1995); doi:10.1016/0016-7037(95)00295-B.
- S. Cicchi, M. Marradi, A. Goti and A. Brandi, Tetrahedron Lett., 42, 6503 (2001); doi:10.1016/S0040-4039(01)01222-9.
- K. Frey, V. Iablokov, G. Sáfrán, J. Osán, I. Sajó, R. Szukiewicz, S. Chenakin and N. Kruse, J. Catal., 287, 30 (2012); doi:10.1016/j.jcat.2011.11.014.
- R. Xu, X. Wang, D. Wang, K. Zhou and Y. Li, J. Catal., 237, 426 (2006); doi:10.1016/j.jcat.2005.10.026.
- T. Chen, H. Dou, X. Li, X. Tang, J. Li and J. Hao, Micropor. Mesopor. Mater., 122, 270 (2009); doi:10.1016/j.micromeso.2009.03.010.
References
J.D. Lou and Z.N. Xu, Tetrahedron Lett., 43, 6149 (2002); doi:10.1016/S0040-4039(02)01345-X.
L.E. Eary and D. Rai, Environ. Sci. Technol., 21, 1187 (1987); doi:10.1021/es00165a005.
Q. Ye, J. Zhao, F. Huo, J. Wang, S. Cheng, T. Kang and H. Dai, Catal. Today, 175, 603 (2011); doi:10.1016/j.cattod.2011.04.008.
American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, Washington DC, USA, edn. 20 (1998).
K. Wu, T. Liu, W. Xue and X.C. Wang, Chem. Eng. J., 192, 343 (2012); doi:10.1016/j.cej.2012.03.058.
P.M. Jardine and D.L. Taylor, Geochim. Cosmochim. Acta, 59, 4193 (1995); doi:10.1016/0016-7037(95)00295-B.
S. Cicchi, M. Marradi, A. Goti and A. Brandi, Tetrahedron Lett., 42, 6503 (2001); doi:10.1016/S0040-4039(01)01222-9.
K. Frey, V. Iablokov, G. Sáfrán, J. Osán, I. Sajó, R. Szukiewicz, S. Chenakin and N. Kruse, J. Catal., 287, 30 (2012); doi:10.1016/j.jcat.2011.11.014.
R. Xu, X. Wang, D. Wang, K. Zhou and Y. Li, J. Catal., 237, 426 (2006); doi:10.1016/j.jcat.2005.10.026.
T. Chen, H. Dou, X. Li, X. Tang, J. Li and J. Hao, Micropor. Mesopor. Mater., 122, 270 (2009); doi:10.1016/j.micromeso.2009.03.010.