Copyright (c) 2025 V. Ponni, C. Rakkappan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Fe3O4:Ce@NaYF4 Core-Shell Nanocomposites: Hydrothermal Synthesis for Enhanced Magnetic, Photocatalytic and Supercapacitor Applications
Corresponding Author(s) : V. Ponni
Asian Journal of Chemistry,
Vol. 37 No. 9 (2025): Vol 37 Issue 9, 2025
Abstract
A novel Fe3O4:Ce@NaYF4 core-shell nanocomposite was synthesized via a facile hydrothermal approach and comprehensively characterized for supercapacitor applications. Thermogravimetric-differential thermal analysis (TG-DTA) confirmed the thermal stability of the nanocomposite, while X-ray diffraction (XRD) verified its crystalline phase purity. The functional group composition of the nanocomposites was analyzed using Fourier-transform infrared (FT-IR) spectroscopy. The formation of well-defined core-shell nanostructures was confirmed by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). Energy-dispersive X-ray spectroscopy (EDX) showed the uniform elemental distribution of core-shell elements. Optical properties analyzed through UV-Vis and photoluminescence (PL) spectroscopy revealed improved visible-light absorption and reduced charge recombination, resulting in enhanced photocatalytic degradation efficiency. X-ray photoelectron spectroscopy (XPS) was employed to assess the elemental composition and oxidation states, while vibrating sample magnetometry (VSM) measurement exhibited strong superparamagnetic behaviour, demonstrating the core-shell nanocomposites applicability in high-performance magnetic system. Comprehensive electrochemical analyses using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) revealed enhanced supercapacitive performance, marked by high specific capacitance and reduced charge-transfer resistance. The synergistic integration of Fe3O3:Ce@NaYF4 core-shell nanocomposite underscores its potential for environmental remediation, magnetic and energy storage applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.M. El-Toni, M.A. Habila, J.P. Labis, Z.A. ALOthman, M. Alhoshan, A.A. Elzatahry and F. Zhang, Nanoscale, 8, 2510 (2016); https://doi.org/10.1039/C5NR07004J
- A.L.G. Cavalcante, D.N. Dari, F.I.S. Aires, E.C. Castro, K.M. Santos and J.C.S. Santos, RSC Adv., 14, 17946 (2024); https://doi.org/10.1039/D4RA01234B
- M. Gong, X. Jin, R. Sakidja and S. Ren, Nano Lett., 15, 8347 (2015); https://doi.org/10.1021/acs.nanolett.5b04036
- F. Liu, X. Zhuang, M. Wang, D. Qi, S. Dong, S. Yip, Y. Yin, C. Pan, Y. Li, D.H.C. Chua, J. Wang and J. Lu, Nat. Commun., 14, 7480 (2023); https://doi.org/10.1038/s41467-023-43323-x
- Aashima, S. Uppal, A. Arora, S. Gautam, S. Singh, R.J. Choudhary and S.K. Mehta, RSC Adv., 9, 23129 (2019); https://doi.org/10.1039/C9RA03252E
- L. Qi, S. Wang, Y. Liu, P. Zhao, J. Tian, B. Zhu, S. Zhang, W. Xie and H. Yu, Nanomaterials, 14, 926 (2024); https://doi.org/10.3390/nano14110926
- W. Ye, R. Long, H. Huang and Y. Xiong, J. Mater. Chem. C, 5, 1008 (2017); https://doi.org/10.1039/C6TC04847A
- R.-T. Guo, J. Wang, Z.-X. Bi, X. Chen, X. Hu and W.-G. Pan, Small, 19, 2206314 (2023); https://doi.org/10.1002/smll.202206314
- A.U. Rehman, M. Atif, M. Younas, T. Rafique, H. Wahab, A. Ul-Hamid, N. Iqbal, Z. Ali and W. Khalid, RSC Adv., 12, 12344 (2022); https://doi.org/10.1039/D2RA00530A
- Y.-A. Chen, Y.-T. Wang, H. S. Moon and K. Yong, RSC Adv., 11, 12288 (2021); https://doi.org/10.1039/D1RA00803J
- S.P. Schwaminger, K. Schwarzenberger, J. Gatzemeier, Z. Lei and K. Eckert, ACS Appl. Mater. Interfaces, 13, 20830 (2021); https://doi.org/10.1021/acsami.1c02919
- A. Shafiee, N. Rabiee, S. Ahmadi, M. Baneshi, M. Khatami, S. Iravani and R.S. Varma, ACS Appl. Nano Mater., 5, 55 (2022); https://doi.org/10.1021/acsanm.1c03714
- F. ul Haq, A. Batool, S. Niazi, I. M. Khan, A. Raza, K. Ali, J. Yang and Z. Wang, Colloids Surf. B Biointerfaces, 247, 114410 (2025); https://doi.org/10.1016/j.colsurfb.2024.114410
- D. Padalia, U.C. Johri and M.G.H. Zaidi, Physica B, 407, 838 (2012); https://doi.org/10.1016/j.physb.2011.12.016
- H.-S. Qian and Y. Zhang, Langmuir, 24, 12123 (2008); https://doi.org/10.1021/la802343f
- G. Paul, S.E. Seo, M.X. Wang, E. Oh, R.J. Macfarlane and C.A. Mirkin, eds.: R. Luque and P. Prinsen, In Nanoparticle Design and Characterization for Catalytic Applications in Sustainable Chemistry, In: RSC Catalysis Series, Eds. Cambridge: Royal Society of Chemistry, pp. 215–234 (2020).
- S. Wang, K. Huang, C. Hou, L. Yuan, X. Wu and D. Lu, Dalton Trans., 44, 17201 (2015); https://doi.org/10.1039/C5DT02342D
- S. Ferdov, Mater. Lett., 138, 13 (2015); https://doi.org/10.1016/j.matlet.2014.09.073
- L. Guo, H. Liang, D. An and H. Yang, Physica E, 151, 115717 (2023); https://doi.org/10.1016/j.physe.2023.115717
- D. Munoz, R. Sahani, S. A. Oyon, L. Biswal, N. Cortes, C.-Y. Lai and D. Radu, Langmuir, 41, 14800 (2025); https://doi.org/10.1021/acs.langmuir.5c00788
- M. Tripathi and S. Bharti, eds.: J.R. Koduru, R.R. Karri, N.M. Mubarak and E.R. Bandala, Sustainable Nanotechnology for Environmental Remediation, In: Micro and Nano Technologies, Elsevier, Chap. 8, pp. 135–157 (2022); https://doi.org/10.1016/B978-0-12-824547-7.00012-6
- J. Zhou, L. Wang, X. Qiao, B. P. Binks and K. Sun, J. Colloid Interface Sci., 367, 213 (2012); https://doi.org/10.1016/j.jcis.2011.11.001
- E. Andresen, F. Islam, C. Prinz, S. Heumann and D. Parisi, Sci. Rep., 13, 2288 (2023); https://doi.org/10.1038/s41598-023-28875-8
- M.D. Nguyen, H.V. Tran, S. Xu and T.R. Lee, Appl. Sci., 11, 11301 (2021); https://doi.org/10.3390/app112311301
- J. Ning, P. Shi, M. Jiang, Y. Wang and X. Li, Appl. Phys. A, 127, 604 (2021); https://doi.org/10.1007/s00339-021-04766-5
- S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang and G. Li, J. Am. Chem. Soc., 126, 273 (2004); https://doi.org/10.1021/ja0380852
- M. Niederberger and N. Pinna, Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application, Berlin: Springer, edn. 1 (2009).
- B.S. Richards, D. Hudry, D. Busko, A. Turshatov and I.A. Howard, Chem. Rev., 121, 9165 (2021); https://doi.org/10.1021/acs.chemrev.1c00034
- X. Liu, C.-H. Yan and J. A. Capobianco, Chem. Soc. Rev., 44, 1299 (2015); https://doi.org/10.1039/C5CS90009C
- S. Sarina, E. R. Waclawik and H. Zhu, Green Chem., 15, 1814 (2013); https://doi.org/10.1039/C3GC40450A
- F. Wang, D. Banerjee, Y. Liu, X. Chen and X. Liu, Analyst, 135, 1839 (2010); https://doi.org/10.1039/C0AN00144A
- Y. Sun, Y. Tian, M. He, Q. Zhao, C. Chen, C. Hu and Y. Liu, J. Electron. Mater., 41, 519 (2012); https://doi.org/10.1007/s11664-011-1800-0
- A. Ahadpour Shal and A. Jafari, J. Supercond. Nov. Magn., 27, 525 (2014); https://doi.org/10.1007/s10948-013-2469-9
- F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li and D. Zhao, Nano Lett., 12, 2852 (2012); https://doi.org/10.1021/nl300421n
- Z. Sun, X. Zhou, W. Luo, Q. Yue, Y. Zhang, X. Cheng, W. Li, B. Kong, Y. Deng and D. Zhao, Nano Today, 11, 464 (2016); https://doi.org/10.1016/j.nantod.2016.07.003
- T. Kataoka, Z. Liu, I. Yamada, T.G. Peñaflor Galindo and M. Tagaya, J. Mater. Chem. B, 12, 6805 (2024); https://doi.org/10.1039/D4TB00551A
- J.-C. Boyer, J. Gagnon, L.A. Cuccia and J.A. Capobianco, Chem. Mater., 19, 3358 (2007); https://doi.org/10.1021/cm070865c
- Y. Wang, J. He, C. Liu, W. H. Chong and H. Chen, Angew. Chem. Int. Ed., 54, 2022 (2015); https://doi.org/10.1002/anie.201402986
- M. Haase and H. Schäfer, Angew. Chem. Int. Ed., 50, 5808 (2011); https://doi.org/10.1002/anie.201005159
- Y. Zhang, P. Wang, J. Li, J. Geng and C. Zhou, J. Mater. Chem. C, 12, 16415 (2024); https://doi.org/10.1039/D4TC02830A
- A.A. Setlur, D.G. Porob, U. Happek and M.G. Brik, J. Lumin., 133, 66 (2013); https://doi.org/10.1016/j.jlumin.2011.09.012
- F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova and Y. K. Gun’ko, ACS Nano, 11, 9207 (2017); https://doi.org/10.1021/acsnano.7b04199
- H.-P. Zhao, M.-L. Zhu, H.-Y. Shi, Q.-Q. Zhou, R. Chen, S.-W. Lin, M.-H. Tong, M.-H. Ji, X. Jiang, C.-X. Liao, Y.-X. Chen and C.-Z. Lu, Molecules, 27, 9050 (2022); https://doi.org/10.3390/molecules27249050
- K.V. Korpany, D.D. Majewski, C.T. Chiu, S.N. Cross and A.S. Blum, Langmuir, 33, 3000 (2017); https://doi.org/10.1021/acs.langmuir.6b03491
- T. Yamashita and P. Hayes, Appl. Surf. Sci., 254, 2441 (2008); https://doi.org/10.1016/j.apsusc.2007.09.063
- A.P. Grosvenor, B.A. Kobe, M.C. Biesinger and N.S. McIntyre, Surf. Interface Anal., 36, 1564 (2004); https://doi.org/10.1002/sia.1984
- M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson and R.St. C. Smart, Appl. Surf. Sci., 257, 2717 (2011); https://doi.org/10.1016/j.apsusc.2010.10.051
- P. Wang, J. T. Koberstein, S. Khalid and S.-W. Chan, Surf. Sci., 563, 74 (2004); https://doi.org/10.1016/j.susc.2004.05.138
- Z. Gerelkhuu, Y.-I. Lee and T. H. Yoon, Nanomaterials, 12, 3470 (2022); https://doi.org/10.3390/nano12193470
- D. Barreca, G.A. Battiston, D. Berto, R. Gerbasi and E. Tondello, Surf. Sci. Spectra, 8, 234 (2001); https://doi.org/10.1116/11.20020404
- A.Y. Germov, D.I. Prokopyev, K.N. Mikhalev, B.Y. Goloborodskiy, M.A. Uymin, A.S. Konev, A.S. Minin, S.V. Novikov, V.S. Gaviko and A.M. Murzakaev, Mater. Today Commun., 27, 102382 (2021); https://doi.org/10.1016/j.mtcomm.2021.102382
- P. Garcia Acevedo, M. A. Gonzalez Gomez, A. Arnosa Prieto, J. S. Garitaonandia, Y. Piñeiro and J. Rivas, Nanomaterials, 12, 456 (2022); https://doi.org/10.3390/nano12030456
- A.A. Krasikov, Y.V. Knyazev, D.A. Balaev, D.A. Velikanov, S.V. Stolyar, Y.L. Mikhlin, R.N. Yaroslavtsev and R.S. Iskhakov, Physica B, 660, 414901 (2023); https://doi.org/10.1016/j.physb.2023.414901
- H. Huang and J.F. Lovell, Adv. Funct. Mater., 27, 1603524 (2017); https://doi.org/10.1002/adfm.201603524
- M.S. Islam, M. Mubarak and H.-J. Lee, Inorganics, 11, 183 (2023); https://doi.org/10.3390/inorganics11050183
- S.-K. Park, J. Sure, D. S. M. Vishnu, S.-J. Jo, W.-C. Lee, I. A. Imran and H.-K. Kim, Energies, 14, 2908 (2021); https://doi.org/10.3390/en14102908
- Y. Haldorai, Y. S. Huh and Y.-K. Han, New J. Chem., 39, 8505 (2015); https://doi.org/10.1039/C5NJ01442E
- S. Ali, T. Ahmad, M.Y. Tahir, M. Usman, M. Chhattal, I. Hussain and S. Khan, J. Energy Storage, 73, 109100 (2023); https://doi.org/10.1016/j.est.2023.109100
- X. Xue, L. Feng, Q. Ren, Y. Zhang and W. Sun, Nano-Micro Lett., 16, 255 (2024); https://doi.org/10.1007/s40820-024-01472-8
References
A.M. El-Toni, M.A. Habila, J.P. Labis, Z.A. ALOthman, M. Alhoshan, A.A. Elzatahry and F. Zhang, Nanoscale, 8, 2510 (2016); https://doi.org/10.1039/C5NR07004J
A.L.G. Cavalcante, D.N. Dari, F.I.S. Aires, E.C. Castro, K.M. Santos and J.C.S. Santos, RSC Adv., 14, 17946 (2024); https://doi.org/10.1039/D4RA01234B
M. Gong, X. Jin, R. Sakidja and S. Ren, Nano Lett., 15, 8347 (2015); https://doi.org/10.1021/acs.nanolett.5b04036
F. Liu, X. Zhuang, M. Wang, D. Qi, S. Dong, S. Yip, Y. Yin, C. Pan, Y. Li, D.H.C. Chua, J. Wang and J. Lu, Nat. Commun., 14, 7480 (2023); https://doi.org/10.1038/s41467-023-43323-x
Aashima, S. Uppal, A. Arora, S. Gautam, S. Singh, R.J. Choudhary and S.K. Mehta, RSC Adv., 9, 23129 (2019); https://doi.org/10.1039/C9RA03252E
L. Qi, S. Wang, Y. Liu, P. Zhao, J. Tian, B. Zhu, S. Zhang, W. Xie and H. Yu, Nanomaterials, 14, 926 (2024); https://doi.org/10.3390/nano14110926
W. Ye, R. Long, H. Huang and Y. Xiong, J. Mater. Chem. C, 5, 1008 (2017); https://doi.org/10.1039/C6TC04847A
R.-T. Guo, J. Wang, Z.-X. Bi, X. Chen, X. Hu and W.-G. Pan, Small, 19, 2206314 (2023); https://doi.org/10.1002/smll.202206314
A.U. Rehman, M. Atif, M. Younas, T. Rafique, H. Wahab, A. Ul-Hamid, N. Iqbal, Z. Ali and W. Khalid, RSC Adv., 12, 12344 (2022); https://doi.org/10.1039/D2RA00530A
Y.-A. Chen, Y.-T. Wang, H. S. Moon and K. Yong, RSC Adv., 11, 12288 (2021); https://doi.org/10.1039/D1RA00803J
S.P. Schwaminger, K. Schwarzenberger, J. Gatzemeier, Z. Lei and K. Eckert, ACS Appl. Mater. Interfaces, 13, 20830 (2021); https://doi.org/10.1021/acsami.1c02919
A. Shafiee, N. Rabiee, S. Ahmadi, M. Baneshi, M. Khatami, S. Iravani and R.S. Varma, ACS Appl. Nano Mater., 5, 55 (2022); https://doi.org/10.1021/acsanm.1c03714
F. ul Haq, A. Batool, S. Niazi, I. M. Khan, A. Raza, K. Ali, J. Yang and Z. Wang, Colloids Surf. B Biointerfaces, 247, 114410 (2025); https://doi.org/10.1016/j.colsurfb.2024.114410
D. Padalia, U.C. Johri and M.G.H. Zaidi, Physica B, 407, 838 (2012); https://doi.org/10.1016/j.physb.2011.12.016
H.-S. Qian and Y. Zhang, Langmuir, 24, 12123 (2008); https://doi.org/10.1021/la802343f
G. Paul, S.E. Seo, M.X. Wang, E. Oh, R.J. Macfarlane and C.A. Mirkin, eds.: R. Luque and P. Prinsen, In Nanoparticle Design and Characterization for Catalytic Applications in Sustainable Chemistry, In: RSC Catalysis Series, Eds. Cambridge: Royal Society of Chemistry, pp. 215–234 (2020).
S. Wang, K. Huang, C. Hou, L. Yuan, X. Wu and D. Lu, Dalton Trans., 44, 17201 (2015); https://doi.org/10.1039/C5DT02342D
S. Ferdov, Mater. Lett., 138, 13 (2015); https://doi.org/10.1016/j.matlet.2014.09.073
L. Guo, H. Liang, D. An and H. Yang, Physica E, 151, 115717 (2023); https://doi.org/10.1016/j.physe.2023.115717
D. Munoz, R. Sahani, S. A. Oyon, L. Biswal, N. Cortes, C.-Y. Lai and D. Radu, Langmuir, 41, 14800 (2025); https://doi.org/10.1021/acs.langmuir.5c00788
M. Tripathi and S. Bharti, eds.: J.R. Koduru, R.R. Karri, N.M. Mubarak and E.R. Bandala, Sustainable Nanotechnology for Environmental Remediation, In: Micro and Nano Technologies, Elsevier, Chap. 8, pp. 135–157 (2022); https://doi.org/10.1016/B978-0-12-824547-7.00012-6
J. Zhou, L. Wang, X. Qiao, B. P. Binks and K. Sun, J. Colloid Interface Sci., 367, 213 (2012); https://doi.org/10.1016/j.jcis.2011.11.001
E. Andresen, F. Islam, C. Prinz, S. Heumann and D. Parisi, Sci. Rep., 13, 2288 (2023); https://doi.org/10.1038/s41598-023-28875-8
M.D. Nguyen, H.V. Tran, S. Xu and T.R. Lee, Appl. Sci., 11, 11301 (2021); https://doi.org/10.3390/app112311301
J. Ning, P. Shi, M. Jiang, Y. Wang and X. Li, Appl. Phys. A, 127, 604 (2021); https://doi.org/10.1007/s00339-021-04766-5
S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang and G. Li, J. Am. Chem. Soc., 126, 273 (2004); https://doi.org/10.1021/ja0380852
M. Niederberger and N. Pinna, Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application, Berlin: Springer, edn. 1 (2009).
B.S. Richards, D. Hudry, D. Busko, A. Turshatov and I.A. Howard, Chem. Rev., 121, 9165 (2021); https://doi.org/10.1021/acs.chemrev.1c00034
X. Liu, C.-H. Yan and J. A. Capobianco, Chem. Soc. Rev., 44, 1299 (2015); https://doi.org/10.1039/C5CS90009C
S. Sarina, E. R. Waclawik and H. Zhu, Green Chem., 15, 1814 (2013); https://doi.org/10.1039/C3GC40450A
F. Wang, D. Banerjee, Y. Liu, X. Chen and X. Liu, Analyst, 135, 1839 (2010); https://doi.org/10.1039/C0AN00144A
Y. Sun, Y. Tian, M. He, Q. Zhao, C. Chen, C. Hu and Y. Liu, J. Electron. Mater., 41, 519 (2012); https://doi.org/10.1007/s11664-011-1800-0
A. Ahadpour Shal and A. Jafari, J. Supercond. Nov. Magn., 27, 525 (2014); https://doi.org/10.1007/s10948-013-2469-9
F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li and D. Zhao, Nano Lett., 12, 2852 (2012); https://doi.org/10.1021/nl300421n
Z. Sun, X. Zhou, W. Luo, Q. Yue, Y. Zhang, X. Cheng, W. Li, B. Kong, Y. Deng and D. Zhao, Nano Today, 11, 464 (2016); https://doi.org/10.1016/j.nantod.2016.07.003
T. Kataoka, Z. Liu, I. Yamada, T.G. Peñaflor Galindo and M. Tagaya, J. Mater. Chem. B, 12, 6805 (2024); https://doi.org/10.1039/D4TB00551A
J.-C. Boyer, J. Gagnon, L.A. Cuccia and J.A. Capobianco, Chem. Mater., 19, 3358 (2007); https://doi.org/10.1021/cm070865c
Y. Wang, J. He, C. Liu, W. H. Chong and H. Chen, Angew. Chem. Int. Ed., 54, 2022 (2015); https://doi.org/10.1002/anie.201402986
M. Haase and H. Schäfer, Angew. Chem. Int. Ed., 50, 5808 (2011); https://doi.org/10.1002/anie.201005159
Y. Zhang, P. Wang, J. Li, J. Geng and C. Zhou, J. Mater. Chem. C, 12, 16415 (2024); https://doi.org/10.1039/D4TC02830A
A.A. Setlur, D.G. Porob, U. Happek and M.G. Brik, J. Lumin., 133, 66 (2013); https://doi.org/10.1016/j.jlumin.2011.09.012
F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova and Y. K. Gun’ko, ACS Nano, 11, 9207 (2017); https://doi.org/10.1021/acsnano.7b04199
H.-P. Zhao, M.-L. Zhu, H.-Y. Shi, Q.-Q. Zhou, R. Chen, S.-W. Lin, M.-H. Tong, M.-H. Ji, X. Jiang, C.-X. Liao, Y.-X. Chen and C.-Z. Lu, Molecules, 27, 9050 (2022); https://doi.org/10.3390/molecules27249050
K.V. Korpany, D.D. Majewski, C.T. Chiu, S.N. Cross and A.S. Blum, Langmuir, 33, 3000 (2017); https://doi.org/10.1021/acs.langmuir.6b03491
T. Yamashita and P. Hayes, Appl. Surf. Sci., 254, 2441 (2008); https://doi.org/10.1016/j.apsusc.2007.09.063
A.P. Grosvenor, B.A. Kobe, M.C. Biesinger and N.S. McIntyre, Surf. Interface Anal., 36, 1564 (2004); https://doi.org/10.1002/sia.1984
M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson and R.St. C. Smart, Appl. Surf. Sci., 257, 2717 (2011); https://doi.org/10.1016/j.apsusc.2010.10.051
P. Wang, J. T. Koberstein, S. Khalid and S.-W. Chan, Surf. Sci., 563, 74 (2004); https://doi.org/10.1016/j.susc.2004.05.138
Z. Gerelkhuu, Y.-I. Lee and T. H. Yoon, Nanomaterials, 12, 3470 (2022); https://doi.org/10.3390/nano12193470
D. Barreca, G.A. Battiston, D. Berto, R. Gerbasi and E. Tondello, Surf. Sci. Spectra, 8, 234 (2001); https://doi.org/10.1116/11.20020404
A.Y. Germov, D.I. Prokopyev, K.N. Mikhalev, B.Y. Goloborodskiy, M.A. Uymin, A.S. Konev, A.S. Minin, S.V. Novikov, V.S. Gaviko and A.M. Murzakaev, Mater. Today Commun., 27, 102382 (2021); https://doi.org/10.1016/j.mtcomm.2021.102382
P. Garcia Acevedo, M. A. Gonzalez Gomez, A. Arnosa Prieto, J. S. Garitaonandia, Y. Piñeiro and J. Rivas, Nanomaterials, 12, 456 (2022); https://doi.org/10.3390/nano12030456
A.A. Krasikov, Y.V. Knyazev, D.A. Balaev, D.A. Velikanov, S.V. Stolyar, Y.L. Mikhlin, R.N. Yaroslavtsev and R.S. Iskhakov, Physica B, 660, 414901 (2023); https://doi.org/10.1016/j.physb.2023.414901
H. Huang and J.F. Lovell, Adv. Funct. Mater., 27, 1603524 (2017); https://doi.org/10.1002/adfm.201603524
M.S. Islam, M. Mubarak and H.-J. Lee, Inorganics, 11, 183 (2023); https://doi.org/10.3390/inorganics11050183
S.-K. Park, J. Sure, D. S. M. Vishnu, S.-J. Jo, W.-C. Lee, I. A. Imran and H.-K. Kim, Energies, 14, 2908 (2021); https://doi.org/10.3390/en14102908
Y. Haldorai, Y. S. Huh and Y.-K. Han, New J. Chem., 39, 8505 (2015); https://doi.org/10.1039/C5NJ01442E
S. Ali, T. Ahmad, M.Y. Tahir, M. Usman, M. Chhattal, I. Hussain and S. Khan, J. Energy Storage, 73, 109100 (2023); https://doi.org/10.1016/j.est.2023.109100
X. Xue, L. Feng, Q. Ren, Y. Zhang and W. Sun, Nano-Micro Lett., 16, 255 (2024); https://doi.org/10.1007/s40820-024-01472-8