Copyright (c) 2025 Baisnabdas Pathak, Saptarshi Samajdar, Deepshikha Datta, Bimal Das, Gautam Mishra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Bioactive Polysaccharide from Ziziphus mauritiana: Isolation, Optimization and Evaluation as Binding Excipient
Corresponding Author(s) : Saptarshi Samajdar
Asian Journal of Chemistry,
Vol. 37 No. 12 (2025): Vol 37 Issue 12, 2025
Abstract
Natural polysaccharides have garnered considerable interest as excipients in pharmaceutical formulations due to their biocompatibility, functional versatility and structural diversity. This study focuses on the isolation, optimization and structural characterization of a novel polysaccharide derived from Ziziphus mauritiana and its evaluation as a tablet binding agent. The extraction process was optimized using response surface methodology (RSM), ensuring maximal yield under controlled conditions. Polysaccharide yield ranged 5.6-9.4%. Max yield (9.4%) achieved at 1:5 pulp-to-water ratio, 60 ºC extraction. Structural elucidation was performed through Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). Linkage analysis revealed the predominance of →4)-Manp-(1→glycosidic linkages, indicating a mannose-rich backbone. Monosaccharide profiling confirmed mannose as a major constituent. The polysaccharide was then formulated as a binder in compressed tablet matrices and compared against potato starch as a standard. The Z. mauritiana polysaccharide demonstrated favourable binding characteristics and resulted in significantly slower drug release compared to potato starch. After 12 h, formulations containing the novel binder released approximately 18% less drug, attributed to the presence of the mannose moiety and its influence on matrix integrity and hydration behaviour. The mannose-rich polysaccharide from Z. mauritiana exhibits promising potential as a natural binding agent in sustained-release tablet formulations. Its ability to modulate drug release kinetics, combined with its natural origin, supports its application as a viable alternative to conventional starch-based binders in pharmaceutical technologies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Dhileepan, Ann. Appl. Biol., 170, 287 (2017); https://doi.org/10.1111/aab.12338
- N. Tel-Zur and B. Schneider, Sex. Plant Reprod., 22, 73 (2009); https://doi.org/10.1007/s00497-009-0093-4
- M. Javed, R. Bibi, K. Nazir and S. Hussain, Adv. Life Sci., 9, 157 (2022); https://doi.org/10.62940/als.v9i2.944
- O. Prakash, S. Usmani, R. Singh, N. Singh, A. Gupta and A. Ved, Phytother. Res., 35, 63 (2021); https://doi.org/10.1002/ptr.6769
- M. Salehi and A. Rashidinejad, Int. J. Biol. Macromol., 290, 138855 (2025); https://doi.org/10.1016/j.ijbiomac.2024.138855
- I. Benalaya, G. Alves, J. Lopes and L.R. Silva, Int. J. Mol. Sci., 25, 1322 (2024); https://doi.org/10.3390/ijms25021322
- B.-W. Xu, S.-S. Li, W.-L. Ding, C. Zhang, M. Rehman, M.F. Tareen, L. Wang and S.-C. Huang, Food Front., 6, 15 (2025); https://doi.org/10.1002/fft2.490
- J. Fu, Y. Zheng, Y. Gao and W. Xu, Microorganisms, 10, 2507 (2022); https://doi.org/10.3390/microorganisms10122507
- L. Wicker, Y. Kim, M.-J. Kim, B. Thirkield, Z. Lin and J. Jung, Food Hydrocolloids, 42, 251 (2014); https://doi.org/10.1016/j.foodhyd.2014.01.002
- D. Saha and S. Bhattacharya, J. Food Sci. Technol., 47, 587 (2010); https://doi.org/10.1007/s13197-010-0162-6
- H. Gong, W. Li, J. Sun, L. Jia, Q. Guan, Y. Guo and Y. Wang, Int. J. Biol. Macromol., 211, 711 (2022); https://doi.org/10.1016/j.ijbiomac.2022.05.087
- D. Sanjanwala, V. Londhe, R. Trivedi, S. Bonde, S. Sawarkar, V. Kale and V. Patravale, Expert Opin. Drug Deliv., 19, 1664 (2022); https://doi.org/10.1080/17425247.2022.2152791
- A.G. Darvill, P. Albersheim, M. McNeil, J.M. Lau, W.S. York, T.T. Stevenson, J. Thomas, S. Doares, D.J. Gollin, P. Chelf and K. Davis, J. Cell Sci. Suppl., 2(Suppl), 203 (1985); https://doi.org/10.1242/jcs.1985.Supplement_2.11
- A. Choudhury, S. Sarma, S. Sarkar, M. Kumari and B.K. Dey, J. Pharmacopuncture, 25, 317 (2022); https://doi.org/10.3831/KPI.2022.25.4.317
- H. Gong, W. Li, J. Sun, L. Jia, Q. Guan, Y. Guo and Y. Wang, Int. J. Biol. Macromol., 211, 711 (2022); https://doi.org/10.1016/j.ijbiomac.2022.05.087
- B. Pathak, S. Samajdar, D. Datta and B. Das, Trends Carbohydr. Res., 16, 2 (2024).
- H. Chen, M. Zhang, Z. Qu and B. Xie, J. Agric. Food Chem., 55, 2256 (2007); https://doi.org/10.1021/jf0632740
- T. Hong, J.Y. Yin, S.P. Nie and M.Y. Xie, Food Chem. X, 12, 100168 (2021); https://doi.org/10.1016/j.fochx.2021.100168
- I. Ciucanu and F. Kerek, Carbohydr. Res., 131, 209 (1984); https://doi.org/10.1016/0008-6215(84)85242-8
- D. Schulze, Effect of Storage Time and Consolidation on Food Powder Flowability, Powders and Bulk Solids, In: Behavior, Characterization, Storage and Flow, Springer-Verlag Berlin Heidelberg (2007)
- K.H. Desta, E. Tadese and F. Molla, BioMed Res. Int., 2021, 5571507 (2021); https://doi.org/10.1155/2021/5571507
- T. Deshmukh, P. Patil, V. Thakare, B. Tekade and V. Patil, Int. J. Discov. Herb. Res., 1, 128 (2011).
- R. Enauyatifard, M. Azadbakht and Y. Fadakar, Acta Pol. Pharm., 69, 291 (2012).
- P. Li, L. Zhou, Y. Mou and Z. Mao, Int. J. Biol. Macromol., 72, 19 (2015); https://doi.org/10.1016/j.ijbiomac.2014.07.057
- A. Ainurofiq and S. Choiri, Lat. Am. J. Pharm., 34, 1328 (2015).
- D. Rout, S. Mondal, I. Chakraborty, M. Pramanik and S.S. Islam, Med. Chem. Res., 13, 509 (2004); https://doi.org/10.1007/s00044-004-0050-6
- R. Wang, P. Chen, F. Jia, J. Tang and F. Ma, Int. J. Biol. Macromol., 50, 331 (2012); https://doi.org/10.1016/j.ijbiomac.2011.12.023
- Q. Ge, J. Huang, J.W. Mao, J.Y. Gong, Y.F. Zhou and J.X. Huang, Int. J. Biol. Macromol., 67, 37 (2014); https://doi.org/10.1016/j.ijbiomac.2014.02.055
- J. Rodrigues, J. Puls, O. Faix and H. Pereira, Holzforschung, 55, 265 (2001); https://doi.org/10.1515/HF.2001.044
- N. Sahragard and K. Jahanbin, Carbohydr. Polym., 175, 610 (2017); https://doi.org/10.1016/j.carbpol.2017.08.042
- D.C. Rodrigues, A.P. Cunha, E.S. Brito, H.M. Azeredo and M.I. Gallao, Food Hydrocoll., 56, 227 (2016); https://doi.org/10.1016/j.foodhyd.2015.12.018
- S. Samajdar and K.J. Kumar, Pharmacogn. Mag., 18, 418 (2022); https://doi.org/10.4103/pm.pm_96_22
- A.K. Jena, M. Das, A. De, D. Mitra and A. Samanta, Asian J. Pharm. Clin. Res., 7, 184 (2014).
- N. Tavakoli, N.G. Dehkordi, R. Teimouri and H. Hamishehkar, Jundishapur J. Nat. Pharm. Prod., 3, 33 (2008).
- A.K. Mistry, C.D. Nagda, D.C. Nagda, B.C. Dixit and R.B. Dixit, Sci. Pharm., 82, 441 (2014); https://doi.org/10.3797/scipharm.1401-14
- D.S. Panda, N.S.K. Choudhury, M. Yedukondalu, S. Si and R. Gupta, Indian J. Pharm. Sci., 70, 614 (2008); https://doi.org/10.4103/0250-474X.45400
References
K. Dhileepan, Ann. Appl. Biol., 170, 287 (2017); https://doi.org/10.1111/aab.12338
N. Tel-Zur and B. Schneider, Sex. Plant Reprod., 22, 73 (2009); https://doi.org/10.1007/s00497-009-0093-4
M. Javed, R. Bibi, K. Nazir and S. Hussain, Adv. Life Sci., 9, 157 (2022); https://doi.org/10.62940/als.v9i2.944
O. Prakash, S. Usmani, R. Singh, N. Singh, A. Gupta and A. Ved, Phytother. Res., 35, 63 (2021); https://doi.org/10.1002/ptr.6769
M. Salehi and A. Rashidinejad, Int. J. Biol. Macromol., 290, 138855 (2025); https://doi.org/10.1016/j.ijbiomac.2024.138855
I. Benalaya, G. Alves, J. Lopes and L.R. Silva, Int. J. Mol. Sci., 25, 1322 (2024); https://doi.org/10.3390/ijms25021322
B.-W. Xu, S.-S. Li, W.-L. Ding, C. Zhang, M. Rehman, M.F. Tareen, L. Wang and S.-C. Huang, Food Front., 6, 15 (2025); https://doi.org/10.1002/fft2.490
J. Fu, Y. Zheng, Y. Gao and W. Xu, Microorganisms, 10, 2507 (2022); https://doi.org/10.3390/microorganisms10122507
L. Wicker, Y. Kim, M.-J. Kim, B. Thirkield, Z. Lin and J. Jung, Food Hydrocolloids, 42, 251 (2014); https://doi.org/10.1016/j.foodhyd.2014.01.002
D. Saha and S. Bhattacharya, J. Food Sci. Technol., 47, 587 (2010); https://doi.org/10.1007/s13197-010-0162-6
H. Gong, W. Li, J. Sun, L. Jia, Q. Guan, Y. Guo and Y. Wang, Int. J. Biol. Macromol., 211, 711 (2022); https://doi.org/10.1016/j.ijbiomac.2022.05.087
D. Sanjanwala, V. Londhe, R. Trivedi, S. Bonde, S. Sawarkar, V. Kale and V. Patravale, Expert Opin. Drug Deliv., 19, 1664 (2022); https://doi.org/10.1080/17425247.2022.2152791
A.G. Darvill, P. Albersheim, M. McNeil, J.M. Lau, W.S. York, T.T. Stevenson, J. Thomas, S. Doares, D.J. Gollin, P. Chelf and K. Davis, J. Cell Sci. Suppl., 2(Suppl), 203 (1985); https://doi.org/10.1242/jcs.1985.Supplement_2.11
A. Choudhury, S. Sarma, S. Sarkar, M. Kumari and B.K. Dey, J. Pharmacopuncture, 25, 317 (2022); https://doi.org/10.3831/KPI.2022.25.4.317
H. Gong, W. Li, J. Sun, L. Jia, Q. Guan, Y. Guo and Y. Wang, Int. J. Biol. Macromol., 211, 711 (2022); https://doi.org/10.1016/j.ijbiomac.2022.05.087
B. Pathak, S. Samajdar, D. Datta and B. Das, Trends Carbohydr. Res., 16, 2 (2024).
H. Chen, M. Zhang, Z. Qu and B. Xie, J. Agric. Food Chem., 55, 2256 (2007); https://doi.org/10.1021/jf0632740
T. Hong, J.Y. Yin, S.P. Nie and M.Y. Xie, Food Chem. X, 12, 100168 (2021); https://doi.org/10.1016/j.fochx.2021.100168
I. Ciucanu and F. Kerek, Carbohydr. Res., 131, 209 (1984); https://doi.org/10.1016/0008-6215(84)85242-8
D. Schulze, Effect of Storage Time and Consolidation on Food Powder Flowability, Powders and Bulk Solids, In: Behavior, Characterization, Storage and Flow, Springer-Verlag Berlin Heidelberg (2007)
K.H. Desta, E. Tadese and F. Molla, BioMed Res. Int., 2021, 5571507 (2021); https://doi.org/10.1155/2021/5571507
T. Deshmukh, P. Patil, V. Thakare, B. Tekade and V. Patil, Int. J. Discov. Herb. Res., 1, 128 (2011).
R. Enauyatifard, M. Azadbakht and Y. Fadakar, Acta Pol. Pharm., 69, 291 (2012).
P. Li, L. Zhou, Y. Mou and Z. Mao, Int. J. Biol. Macromol., 72, 19 (2015); https://doi.org/10.1016/j.ijbiomac.2014.07.057
A. Ainurofiq and S. Choiri, Lat. Am. J. Pharm., 34, 1328 (2015).
D. Rout, S. Mondal, I. Chakraborty, M. Pramanik and S.S. Islam, Med. Chem. Res., 13, 509 (2004); https://doi.org/10.1007/s00044-004-0050-6
R. Wang, P. Chen, F. Jia, J. Tang and F. Ma, Int. J. Biol. Macromol., 50, 331 (2012); https://doi.org/10.1016/j.ijbiomac.2011.12.023
Q. Ge, J. Huang, J.W. Mao, J.Y. Gong, Y.F. Zhou and J.X. Huang, Int. J. Biol. Macromol., 67, 37 (2014); https://doi.org/10.1016/j.ijbiomac.2014.02.055
J. Rodrigues, J. Puls, O. Faix and H. Pereira, Holzforschung, 55, 265 (2001); https://doi.org/10.1515/HF.2001.044
N. Sahragard and K. Jahanbin, Carbohydr. Polym., 175, 610 (2017); https://doi.org/10.1016/j.carbpol.2017.08.042
D.C. Rodrigues, A.P. Cunha, E.S. Brito, H.M. Azeredo and M.I. Gallao, Food Hydrocoll., 56, 227 (2016); https://doi.org/10.1016/j.foodhyd.2015.12.018
S. Samajdar and K.J. Kumar, Pharmacogn. Mag., 18, 418 (2022); https://doi.org/10.4103/pm.pm_96_22
A.K. Jena, M. Das, A. De, D. Mitra and A. Samanta, Asian J. Pharm. Clin. Res., 7, 184 (2014).
N. Tavakoli, N.G. Dehkordi, R. Teimouri and H. Hamishehkar, Jundishapur J. Nat. Pharm. Prod., 3, 33 (2008).
A.K. Mistry, C.D. Nagda, D.C. Nagda, B.C. Dixit and R.B. Dixit, Sci. Pharm., 82, 441 (2014); https://doi.org/10.3797/scipharm.1401-14
D.S. Panda, N.S.K. Choudhury, M. Yedukondalu, S. Si and R. Gupta, Indian J. Pharm. Sci., 70, 614 (2008); https://doi.org/10.4103/0250-474X.45400