Copyright (c) 2025 Pradeep Heregangur Keshavamurthysetty, Madhu S, Dipti H Patel, sandeep D S, Nithish S , Parimal H

This work is licensed under a Creative Commons Attribution 4.0 International License.
Overview of Nanocellulose and its Applications: Insights using Scientometric Analysis
Corresponding Author(s) : H.K. Pradeep
Asian Journal of Chemistry,
Vol. 37 No. 12 (2025): Vol 37 Issue 12, 2025
Abstract
This overview explores the versatility and applications of nanocellulose in various technologies, including energy production, biosensors and bioelectronics. It highlights the potential of bioelectronic decals for physiological and health monitoring as well as for the fabrication of flexible light-emitting sheets. Nanocellulose is also crucial in energy storage materials, particularly in solar heat-harvesting technologies and is essential for environmental sustainability because of its catalytic use in water and air purification. The growing need for nanocellulose based sensors in the healthcare and pollution control sectors is emphasized. Furthermore, the study discusses the role of nanocellulose in 3D bioprinting and tissue engineering with the development of printable hydrogels and regenerative medicine. Furthermore, a scientometric analysis based on Scopus data from 2015 to 2024 is conducted to evaluate the research trends in nanocellulose and its applications. The study provides insights into year-wise production, the top 10 contributing authors, their affiliations, leading countries and the most influential journals in the field. By analyzing publication trends and citation metrics, this review offers a comprehensive overview of the research landscape and the evolving impact of nanocellulose in scientific and industrial applications. Nanocellulose is a revolutionary and promising material with immense potential across multiple domains.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.K. Alias, S. Peter, N. Lyczko, A. Nzihou, H.J. Maria and S. Thomas, Mater. Today Sustain., 24, 100510 (2023); https://doi.org/10.1016/j.mtsust.2023.100510
- R.H. Atalla and D.L. VanderHart, Science, 223, 283 (1984); https://doi.org/10.1126/science.223.4633.283.
- M.N. Norizan, S.S. Shazleen, A.H. Alias, F.A. Sabaruddin, M.R.M. Asyraf, E.S. Zainudin, N. Abdullah, M.S. Samsudin, S.H. Kamarudin, and M.N.F. Norrrahim, Nanomaterials, 12, 3483 (2022); https://doi.org/10.3390/nano12193483
- D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray and A. Dorris, Angew. Chem. Int. Ed., 50, 5438 (2011); https://doi.org/10.1002/anie.201001273
- H.K. Pradeep, D.H. Patel, S. Sahana, N. Abhishek, H. Jeevan, V. Karthik, K.V. Tejasvini and D.V. Pattanashetty, Asian J. Chem., 37, 145 (2024); https://doi.org/10.14233/ajchem.2025.32878
- S.M. Choi, K.M. Rao, S.M. Zo, E.J. Shin and S.S. Han, Polymers, 14, 1080 (2022); https://doi.org/10.3390/polym14061080
- R. Nayak, D. Cleveland, G. Tran and F. Joseph, J. Mater. Sci., 59, 6685 (2024); https://doi.org/10.1007/s10853-024-09577-6
- D. Gautam, Y.K. Walia and V. Rana, Asian J. Chem., 37, 340 (2025); https://doi.org/10.14233/ajchem.2025.33005
- R.M. Santos, W.P. Flauzino Neto, H.A. Silvério, D.F. Martins, N.O. Dantas and D. Pasquini, Ind. Crops Prod., 50, 707 (2013); https://doi.org/10.1016/j.indcrop.2013.08.049
- R.J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, Chem. Soc. Rev., 40, 3941 (2011); https://doi.org/10.1039/c0cs00108b
- S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, S.J. Rowan, J.R. Capadona, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A.N. Nakagaito, A. Mangalam, J. Simonsen, A.S. Benight, A. Bismarck, L.A. Berglund and T. Peijs, J. Mater. Sci., 45, 1 (2010); https://doi.org/10.1007/s10853-009-3874-0
- H. Kargarzadeh, M. Mariano, J. Huang, N. Lin, I. Ahmad, A. Dufresne and S. Thomas, Polymer, 132, 368 (2017); https://doi.org/10.1016/j.polymer.2017.09.043
- A. Dufresne, Curr. For. Rep., 5, 76 (2019); https://doi.org/10.1007/s40725-019-00088-1
- P. Kaur, N. Sharma, M. Munagala, R. Rajkhowa, B. Aallardyce, Y. Shastri and R. Agrawal, Front. Nanotechnol., 3, 747329 (2021); https://doi.org/10.3389/fnano.2021.747329
- A. Isogai, T. Saito and H. Fukuzumi, Nanoscale, 3, 71 (2011); https://doi.org/10.1039/C0NR00583E
- M.J. Cho and B.D. Park, J. Ind. Eng. Chem., 17, 36 (2011); https://doi.org/10.1016/j.jiec.2010.10.006
- E.G. Bacha, H.D. Demsash, L.D. Shumi and B.E. Debesa, Adv. Polym. Technol., 2022, 1 (2022); https://doi.org/10.1155/2022/6947591
- H. Xu, Y. Liu, Y. Xie, E. Zhu, Z. Shi, Q. Yang and C. Xiong, Cellulose, 26, 8645 (2019); https://doi.org/10.1007/s10570-019-02689-2
- P.G. Gan, S.T. Sam, M.F. Abdullah and M.F. Omar, J. Appl. Polym. Sci., 137, 48544 (2020); https://doi.org/10.1002/app.48544
- J. Panta, A.N. Rider, J. Wang, R. Yang, N. Brack and Y.X. Zhang, Appl. Surf. Sci., 634, 157691 (2023); https://doi.org/10.1016/j.apsusc.2023.157691
- K. Heise, E. Kontturi, Y. Allahverdiyeva, T. Tammelin, M.B. Linder, Nonappa and O. Ikkala, Adv. Mater., 33, 2004349 (2021); https://doi.org/10.1002/adma.202004349
- D. Trache, A.F. Tarchoun, M. Derradji, T.S. Hamidon, N. Masruchin, N. Brosse and M.H. Hussin, Front Chem., 8, 535734 (2020); https://doi.org/10.3389/FCHEM.2020.00392/XML
- A. Dufresne, Mater. Today, 16, 220 (2013); https://doi.org/10.1016/j.mattod.2013.06.004.
- Y. Xue, Z. Mou and H. Xiao, Nanoscale, 9, 14758 (2017); https://doi.org/10.1039/C7NR04994C
- L. Bacakova, J. Pajorova, M. Tomkova, R. Matejka, J. Stepanovska, A. Broz, S. Prazak, A. Skogberg, S. Siljander and P. Kallio, Nanomaterials, 10, 196 (2020); https://doi.org/10.3390/nano10020196
- R.K. Mishra, A. Sabu and S.K. Tiwari, J. Saudi Chem. Soc., 22, 949 (2018); https://doi.org/10.1016/j.jscs.2018.02.005
- D. Hu and W. Ma, Ind. Eng. Chem. Res., 59, 19465 (2020); https://doi.org/10.1021/acs.iecr.0c04319
- W.C. Lum, S.H. Lee, Z. Ahmad, J.A. Halip and K.L. Chin, in eds.: S. Thomas, Y. Grohens and Y. Pottathara, Lignocellulosic Nanomaterials for Construction and Building Applications, In: Industrial Applications of Nanomaterials, Elsevier, Chap. 15, pp. 423-439 (2015).
- M. Fumagalli, J. Berriot, B. De Gaudemaris, A. Veyland, J.-L. Putaux, S. Molina-Boisseau and L. Heux, Soft Matter, 14, 2638 (2018); https://doi.org/10.1039/C8SM00210J
- L. Brinchi, F. Cotana, E. Fortunati and J.M. Kenny, Carbohydr. Polym., 94, 154 (2013); https://doi.org/10.1016/j.carbpol.2013.01.033
- Y. Habibi, L.A. Lucia and O.J. Rojas, Chem. Rev., 110, 3479 (2010); https://doi.org/10.1021/cr900339w
- M. He, J. Zhou, H. Zhang, Z. Luo and J. Yao, J. Appl. Polym. Sci., 132, app.42488 (2015); https://doi.org/10.1002/app.42488
- L. Gan, J. Liao, N. Lin, C. Hu, H. Wang and J. Huang, ACS Omega, 2, 4725 (2017); https://doi.org/10.1021/acsomega.7b00532
- A.F. Jozala, L.C. de Lencastre-Novaes, A.M. Lopes, V. de Carvalho Santos-Ebinuma, P.G. Mazzola, A. Pessoa-Jr, D. Grotto, M. Gerenutti and M.V. Chaud, Appl. Microbiol. Biotechnol., 100, 2063 (2016); https://doi.org/10.1007/s00253-015-7243-4
- F. Mohammadkazemi, R. Aguiar and N. Cordeiro, Cellulose, 24, 1803 (2017); https://doi.org/10.1007/s10570-017-1210-4
- T. Tabarsa, S. Sheykhnazari, A. Ashori, M. Mashkour and A. Khazaeian, Int. J. Biol. Macromol., 101, 334 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.108
- M.V.G. Zimmermann, M.P. da Silva, R.M. Campomanes-Santana and A.J. Zattera, J. Appl. Polym. Sci., 134, app.44760 (2017); https://doi.org/10.1002/app.44760
- B. Wei, H. Li, Q. Li, Y. Wen, L. Sun, P. Wei, W. Pu and Y. Li, Langmuir, 33, 5127 (2017); https://doi.org/10.1021/acs.langmuir.7b00387
- S.S. Nair, J.Y. Zhu, Y. Deng and A.J. Ragauskas, Sustain. Chem. Process., 2, 23 (2014); https://doi.org/10.1186/s40508-014-0023-0
- H.M.C. Azeredo, M.F. Rosa and L.H.C. Mattoso, Ind. Crops Prod., 97, 664 (2017); https://doi.org/10.1016/j.indcrop.2016.03.013
- M.A. Hubbe, A. Ferrer, P. Tyagi, Y. Yin, C. Salas, L. Pal and O.J. Rojas, BioResources, 12, 2143 (2017); https://doi.org/10.15376/biores.12.1.Hubbe
- A. Ferrer, L. Pal and M. Hubbe, Ind. Crops Prod., 95, 574 (2017); https://doi.org/10.1016/j.indcrop.2016.11.012
- C. Aulin and G. Ström, Ind. Eng. Chem. Res., 52, 2582 (2013); https://doi.org/10.1021/ie301785a
- K. Syverud and P. Stenius, Cellulose, 16, 75 (2009); https://doi.org/10.1007/s10570-008-9244-2
- Y. Choi and J. Simonsen, J. Nanosci. Nanotechnol., 6, 633 (2006); https://doi.org/10.1166/jnn.2006.132
- M. Minelli, M.G. Baschetti, F. Doghieri, M. Ankerfors, T. Lindström, I. Siró and D. Plackett, J. Membr. Sci., 358, 67 (2010); https://doi.org/10.1016/j.memsci.2010.04.030
- F. Li, P. Biagioni, M. Bollani, A. Maccagnan and L. Piergiovanni, Cellulose, 20, 2491 (2013); https://doi.org/10.1007/s10570-013-0015-3
- A.B. Perumal, R.B. Nambiar, C. Anandharamakrishnan and J.A. Moses, Food Hydrocoll., 127, 107484 (2022); https://doi.org/10.1016/j.foodhyd.2022.107484
- M. Nogi and H. Yano, Appl. Phys. Lett., 94, 233117 (2009); https://doi.org/10.1063/1.3154547
- M. Nogi, S. Iwamoto, A.N. Nakagaito and H. Yano, Adv. Mater., 21, 1595 (2009); https://doi.org/10.1002/adma.200803174
- M. Nogi and H. Yano, Adv. Mater., 20, 1849 (2008); https://doi.org/10.1002/adma.200702559
- M.C. Hsieh, H. Koga, K. Suganuma and M. Nogi, Sci. Rep., 71, 41590 (2017); https://doi.org/10.1038/srep41590
- C. Honorato, V. Kumar, J. Liu, H. Koivula, C. Xu and M. Toivakka, J. Mater. Sci., 50, 7343 (2015); https://doi.org/10.1007/s10853-015-9291-7
- C. Aulin, M. Gällstedt and T. Lindström, Cellulose, 17, 559 (2010); https://doi.org/10.1007/s10570-009-9393-y
- G. Chinga-Carrasco, N. Averianova, M. Gibadullin, V. Petrov, I. Leirset and K. Syverud, Micron, 44, 331 (2013); https://doi.org/10.1016/j.micron.2012.08.005
- J.M. Lagaron, R. Catalá and R. Gavara, Mater. Sci. Technol., 20, 1 (2004); https://doi.org/10.1179/026708304225010442
- M. Österberg, J. Vartiainen, J. Lucenius, U. Hippi, J. Seppälä, R. Serimaa and J. Laine, ACS Appl. Mater. Interfaces, 5, 4640 (2013); https://doi.org/10.1021/am401046x
- J. Vartiainen, Y. Shen, T. Kaljunen, T. Malm, M. Vähä-Nissi, M. Putkonen and A. Harlin, J. Appl. Polym. Sci., 133, 42260 (2016); https://doi.org/10.1002/app.42260
- M. Vähä-Nissi, H.M. Koivula, H.M. Räisänen, J. Vartiainen, P. Ragni, E. Kenttä, T. Kaljunen, T. Malm, H. Minkkinen and A. Harlin, J. Appl. Polym. Sci., 134, 44830 (2017); https://doi.org/10.1002/app.44830
- M. Schade, S. Weinkoetz and J. Assmann, Lignocellulosic Material Useful e.g. for Producing Articles e.g. Packaging Materials, Comprises Lignocellulose‑Containing Material, Microfibrillated Cellulose, Binder Optionally with Curing Agent, Expanded Plastic Particles and Additives, WO Patent 2015052028 A1 (2015)
- H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto and A. Isogai, Biomacromolecules, 10, 162 (2009); https://doi.org/10.1021/bm801065u
- S. Fujisawa, Y. Okita, H. Fukuzumi, T. Saito and A. Isogai, Carbohydr. Polym., 84, 579 (2011); https://doi.org/10.1016/j.carbpol.2010.12.029
- M.S. Peresin, K. Kammiovirta, H. Heikkinen, L.-S. Johansson, J. Vartiainen, H. Setälä, M. Österberg and T. Tammelin, Carbohydr. Polym., 174, 309 (2017); https://doi.org/10.1016/j.carbpol.2017.06.066
- W. Yang, H. Bian, L. Jiao, W. Wu, Y. Deng and H. Dai, RSC Adv., 7, 31567 (2017); https://doi.org/10.1039/C7RA05009G
- X. Tian, D. Yan, Q. Lu and X. Jiang, Cellulose, 24, 163 (2017); https://doi.org/10.1007/s10570-016-1119-3
- K. Yao, S. Huang, H. Tang, Y. Xu, G. Buntkowsky, L.A. Berglund and Q. Zhou, ACS Appl. Mater. Interfaces, 9, 20169 (2017); https://doi.org/10.1021/acsami.7b02177
- X. Feng, Y. Zhao, Y. Jiang, M. Miao, S. Cao and J. Fang, Carbohydr. Polym., 161, 253 (2017); https://doi.org/10.1016/j.carbpol.2017.01.030
- N.C.T. Martins, C.S.R. Freire, C.P. Neto, A.J.D. Silvestre, J. Causio, G. Baldi, P. Sadocco and T. Trindade, Colloids Surf. A Physicochem. Eng. Asp., 417, 111 (2013); https://doi.org/10.1016/j.colsurfa.2012.10.042
- J. Henschen, P.A. Larsson, J. Illergård, M. Ek and L. Wågberg, Colloids Surf. B Biointerfaces, 151, 224 (2017); https://doi.org/10.1016/j.colsurfb.2016.12.018
- M.A. El-Samahy, S.A.A. Mohamed, M.H. Abdel Rehim and M.E. Mohram, Carbohydr. Polym., 168, 212 (2017); https://doi.org/10.1016/j.carbpol.2017.03.041
- M.D. Sánchez-García, L. Hilliou and J.M. Lagarón, J. Agric. Food Chem., 58, 12847 (2010); https://doi.org/10.1021/jf102764e
- V. Sedlarik, O. Otgonzul, T. Kitano, A. Gregorova, M. Hrabalova, I. Junkar, U. Cvelbar, M. Mozetic and P. Saha, J. Macromol. Sci. Part B Phys., 51, 982 (2012); https://doi.org/10.1080/00222348.2011.610265
- N. Ljungberg and B. Wesslén, J. Appl. Polym. Sci., 86, 1227 (2002); https://doi.org/10.1002/app.11077
- Z. Song, H. Xiao and Y. Zhao, Carbohydr. Polym., 111, 442 (2014); https://doi.org/10.1016/j.carbpol.2014.04.049
- C. Amara, A. El Mahdi, R. Medimagh and K. Khwaldia, Curr. Opin. Green Sustain. Chem., 31, 100512 (2021); https://doi.org/10.1016/j.cogsc.2021.100512
- I. Siro and D. Plackett, Cellulose, 17, 459 (2010); https://doi.org/10.1007/s10570-010-9405-y
- C. Campano, A. Balea, A. Blanco and C. Negro, Cellulose, 23, 57 (2016); https://doi.org/10.1007/s10570-015-0802-0
- W.K. Czaja, D.J. Young, M. Kawecki and R.M. Brown, Biomacromolecules, 8, 1 (2007); https://doi.org/10.1021/bm060620d
- H. Ullah, F. Wahid, H.A. Santos and T. Khan, Carbohydr. Polym., 150, 330 (2016); https://doi.org/10.1016/j.carbpol.2016.05.029
- C. Zhijiang and Y. Guang, J. Appl. Polym. Sci., 120, 2938 (2011); https://doi.org/10.1002/app.33318
- S. Saska, L.N. Teixeira, L.M.S. de Castro Raucci, R.M. Scarel-Caminaga, L.P. Franchi, R.A. dos Santos, S.H. Santagneli, M.V. Capela, P.T. de Oliveira, C.S. Takahashi, A.M.M. Gaspar, Y. Messaddeq, S.J.L. Ribeiro and R. Marchetto, Int. J. Biol. Macromol., 103, 467 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.086
- C. Guise and R. Fangueiro, RILEM Bookseries, 12, 155 (2016); https://doi.org/10.1007/978-94-017-7515-1_12
- T. Petreus, B.A. Stoica, O. Petreus, A. Goriuc, C.-E. Cotrutz, I.-V. Antoniac and L. Barbu-Tudoran, J. Mater. Sci. Mater. Med., 25, 1115 (2014); https://doi.org/10.1007/s10856-014-5146-z
- A.L. Menas, N. Yanamala, M.T. Farcas, M. Russo, S. Friend, A. Star, P.M. Fournier, I. Iavicoli, G.V. Shurin, U.B. Vogel, B. Fadeel, D. Beezhold, E.R. Kisin and A.A. Shvedova, Chemosphere, 171, 671 (2017); https://doi.org/10.1016/j.chemosphere.2016.12.105
- K. Hua, E. Ålander, T. Lindström, A. Mihranyan, M. Strømme and N. Ferraz, Biomacromolecules, 16, 2787 (2015); https://doi.org/10.1021/acs.biomac.5b00727
- J.C. Fricain, P.L. Granja, M.A. Barbosa, B. De Jéso, N. Barthe and C. Baquey, Biomaterials, 23, 971 (2002); https://doi.org/10.1016/S0142-9612(01)00152-1
- A. Gumrah Dumanli, Curr. Med. Chem., 24, 512 (2017); https://doi.org/10.2174/0929867323666161014124008
- H. Mertaniemi, C. Escobedo-Lucea, A. Sanz-Garcia, C. Gandía, A. Mäkitie, J. Partanen, O. Ikkala and M. Yliperttula, Biomaterials, 82, 208 (2016); https://doi.org/10.1016/j.biomaterials.2015.12.020
- A. Basu, J. Lindh, E. Ålander, M. Strømme and N. Ferraz, Carbohydr. Polym., 174, 299 (2017); https://doi.org/10.1016/j.carbpol.2017.06.073
- N.E. Zander, H. Dong, J. Steele and J.T. Grant, ACS Appl. Mater. Interfaces, 6, 18502 (2014); https://doi.org/10.1021/am506007z
- G.K. Tummala, T. Joffre, R. Rojas, C. Persson and A. Mihranyan, Soft Matter, 13, 3936 (2017); https://doi.org/10.1039/C7SM00677B
- N. Lin, A. Gèze, D. Wouessidjewe, J. Huang and A. Dufresne, ACS Appl. Mater. Interfaces, 8, 6880 (2016); https://doi.org/10.1021/acsami.6b00555
- K.J. De France, T. Hoare and E.D. Cranston, Chem. Mater., 29, 4609 (2017); https://doi.org/10.1021/acs.chemmater.7b00531
- N. Lavoine, I. Desloges and J. Bras, Carbohydr. Polym., 103, 528 (2014); https://doi.org/10.1016/j.carbpol.2013.12.035
- S. Dong, H.J. Cho, Y.W. Lee and M. Roman, Biomacromolecules, 15, 1560 (2014); https://doi.org/10.1021/bm401593n
- T.M.S.U. Gunathilake, Y.C. Ching and C.H. Chuah, Polymers, 9, 64 (2017); https://doi.org/10.3390/polym9020064
- S. Ahankari, P. Paliwal, A. Subhedar and H. Kargarzadeh, ACS Nano, 15, 3849 (2021); https://doi.org/10.1021/acsnano.0c09678
- L. Saïdi, C. Vilela, H. Oliveira, A.J.D. Silvestre and C.S.R. Freire, Carbohydr. Polym., 169, 357 (2017); https://doi.org/10.1016/j.carbpol.2017.04.030
- S. Salimi, R. Sotudeh-Gharebagh, R. Zarghami, S.Y. Chan and K.H. Yuen, ACS Sustain. Chem.& Eng., 7, 15800 (2019); https://doi.org/10.1021/acssuschemeng.9b02744
- G. Metreveli, L. Wågberg, E. Emmoth, S. Belák, M. Strømme and A. Mihranyan, Adv. Healthc. Mater., 3, 1546 (2014); https://doi.org/10.1002/adhm.201300641
- H.K. Pradeep and D.H. Patel, Asian J. Chem., 36, 2079 (2024); https://doi.org/10.14233/ajchem.2024.32127
- M. Asper, T. Hanrieder, A. Quellmalz and A. Mihranyan, Biologicals, 43, 452 (2015); https://doi.org/10.1016/j.biologicals.2015.08.001
- S. Gustafsson and A. Mihranyan, ACS Appl. Mater. Interfaces, 8, 13759 (2016); https://doi.org/10.1021/acsami.6b03093
- A. Quellmalz and A. Mihranyan, ACS Biomater. Sci. Eng., 1, 271 (2015); https://doi.org/10.1021/ab500161x
- G.A. Junter and L. Lebrun, Rev. Environ. Sci. Biotechnol., 16, 455 (2017); https://doi.org/10.1007/s11157-017-9434-1
- J.O. Zoppe, V. Ruottinen, J. Ruotsalainen, S. Rönkkö, L.-S. Johansson, A. Hinkkanen, K. Järvinen and J. Seppälä, Biomacromolecules, 15, 1534 (2014); https://doi.org/10.1021/bm500229d
- J.V. Edwards, N. Prevost, K. Sethumadhavan, A. Ullah and B. Condon, Cellulose, 20, 1223 (2013); https://doi.org/10.1007/s10570-013-9901-y
- K. Markstedt, A. Mantas, I. Tournier, H. Martínez Ávila, D. Hägg and P. Gatenholm, Biomacromolecules, 16, 1489 (2015); https://doi.org/10.1021/acs.biomac.5b00188
- J. Leppiniemi, P. Lahtinen, A. Paajanen, R. Mahlberg, S. Metsä-Kortelainen, T. Pinomaa, H. Pajari, I. Vikholm-Lundin, P. Pursula and V.P. Hytönen, ACS Appl. Mater. Interfaces, 9, 21959 (2017); https://doi.org/10.1021/acsami.7b02756
- M.Y. Leong, Y.L. Kong, M.Y. Harun, C.Y. Looi and W.F. Wong, Carbohydr. Res., 532, 108899 (2023); https://doi.org/10.1016/j.carres.2023.108899
- M.J. Serpe, Y. Kang and Q.M. Zhang, Photonic Materials for Sensing, Biosensing and Display Devices, Springer Series in Materials Science (SSMATERIALS) Springer International Publishing AG, vol. 229 (2016).
- L.H. Nguyen, S. Naficy, R. Chandrawati and F. Dehghani, Adv. Mater. Interfaces, 6, 1900424 (2019); https://doi.org/10.1002/admi.201900424
- H. Golmohammadi, E. Morales-Narváez, T. Naghdi and A. Merkoçi, Chem. Mater., 29, 5426 (2017); https://doi.org/10.1021/acs.chemmater.7b01170
- R. Mangayil, S. Rajala, A. Pammo, E. Sarlin, J. Luo, V. Santala, M. Karp and S. Tuukkanen, ACS Appl. Mater. Interfaces, 9, 19048 (2017); https://doi.org/10.1021/acsami.7b04927
- A. Subhedar, S. Bhadauria, S. Ahankari and H. Kargarzadeh, Int. J. Biol. Macromol., 166, 587 (2021); https://doi.org/10.1016/j.ijbiomac.2020.10.217
- Y. Gao and Z. Jin, ACS Sustain. Chem.& Eng., 6, 6192 (2018); https://doi.org/10.1021/acssuschemeng.7b04899
- S. Lombardo, S. Eyley, C. Schütz, H. van Gorp, S. Rosenfeldt, G. Van den Mooter and W. Thielemans, Langmuir, 33, 5473 (2017); https://doi.org/10.1021/acs.langmuir.7b00710
- Z. Li, C. Yao, F. Wang, Z. Cai and X. Wang, Nanotechnology, 25, 504005 (2014); https://doi.org/10.1088/0957-4484/25/50/504005
- D.J. Gardner, G.S. Oporto, R. Mills and M.A.S.A. Samir, J. Adhes. Sci. Technol., 22, 545 (2008); https://doi.org/10.1163/156856108X295509
- R. Weishaupt, G. Siqueira, M. Schubert, M.M. Kämpf, T. Zimmermann, K. Maniura-Weber and G. Faccio, Adv. Funct. Mater., 27, 1604291 (2017); https://doi.org/10.1002/adfm.201604291
- X. Du, Z. Zhang, W. Liu and Y. Deng, Nano Energy, 35, 299 (2017); https://doi.org/10.1016/j.nanoen.2017.04.001
- G. Nyström, A. Mihranyan, A. Razaq, T. Lindström, L. Nyholm and M. Strømme, J. Phys. Chem. B, 114, 4178 (2010); https://doi.org/10.1021/jp911272m
- Z. Wang, D.O. Carlsson, P. Tammela, K. Hua, P. Zhang, L. Nyholm and M. Strømme, ACS Nano, 9, 7563 (2015); https://doi.org/10.1021/acsnano.5b02846
- W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink, J. Simonsen and X. Ji, J. Mater. Chem. A Mater. Energy Sustain., 1, 10662 (2013); https://doi.org/10.1039/c3ta12389h
- C. Legnani, C. Vilani, V.L. Calil, H.S. Barud, W.G. Quirino, C.A. Achete, S.J.L. Ribeiro and M. Cremona, Thin Solid Films, 517, 1016 (2008); https://doi.org/10.1016/j.tsf.2008.06.011
- F. Hoeng, J. Bras, E. Gicquel, G. Krosnicki and A. Denneulin, RSC Adv., 7, 15372 (2017); https://doi.org/10.1039/C6RA23667G
- L. Valentini, S. Bittolo Bon, M. Cardinali, E. Fortunati and J.M. Kenny, Mater. Lett., 126, 55 (2014); https://doi.org/10.1016/j.matlet.2014.04.003
- H. Jin, G. Marin, A. Giri, T. Tynell, M. Gestranius, B.P. Wilson, E. Kontturi, T. Tammelin, P.E. Hopkins and M. Karppinen, J. Mater. Sci., 52, 6093 (2017); https://doi.org/10.1007/s10853-017-0848-5
- J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings and L. Hu, ACS Nano, 7, 2106 (2013); https://doi.org/10.1021/nn304407r
- M.C. Hsieh, C. Kim, M. Nogi and K. Suganuma, Nanoscale, 5, 9289 (2013); https://doi.org/10.1039/c3nr01951a
- Y. Shin, I.T. Bae, B.W. Arey and G.J. Exarhos, Mater. Lett., 61, 3215 (2007); https://doi.org/10.1016/j.matlet.2006.11.036
- Y. Shin, J.M. Blackwood, I.T. Bae, B.W. Arey and G.J. Exarhos, Mater. Lett., 61, 4297 (2007); https://doi.org/10.1016/j.matlet.2007.01.091
- J. Xue, F. Song, X.W. Yin, X. Wang and Y. Wang, ACS Appl. Mater. Interfaces, 7, 10076 (2015); https://doi.org/10.1021/acsami.5b02011
- N.M. Park, J.B. Koo, J.Y. Oh, H.J. Kim, C.W. Park, S.-D. Ahn and S.W. Jung, Mater. Lett., 196, 12 (2017); https://doi.org/10.1016/j.matlet.2017.03.003
- F. Hoeng, A. Denneulin and J. Bras, Nanoscale, 8, 13131 (2016); https://doi.org/10.1039/C6NR03054H
- Z. Karim, M. Hakalahti, T. Tammelin and A.P. Mathew, RSC Adv., 7, 5232 (2017); https://doi.org/10.1039/C6RA25707K
- Y. Li, S. Yu, P. Chen, R. Rojas, A. Hajian and L. Berglund, Nano Energy, 34, 541 (2017); https://doi.org/10.1016/j.nanoen.2017.03.010
- N.M. Julkapli and S. Bagheri, Polym. Adv. Technol., 28, 1583 (2017); https://doi.org/10.1002/pat.4074
- Z. Wang, P. Tammela, M. Strømme and L. Nyholm, Adv. Energy Mater., 7, 1700130 (2017); https://doi.org/10.1002/aenm.201700130
- R. Reshmy, E. Philip, D. Thomas, A. Madhavan, R. Sindhu, P. Binod, S. Varjani, M.K. Awasthi and A. Pandey, Bioengineered, 12, 11463 (2021); https://doi.org/10.1080/21655979.2021.2009753
- M. Hamedi, E. Karabulut, A. Marais, A. Herland, G. Nyström and L. Wågberg, Angew. Chem. Int. Ed., 52, 12038 (2013); https://doi.org/10.1002/anie.201305137
- N. Blomquist, T. Wells, B. Andres, J. Bäckström, S. Forsberg and H. Olin, Sci. Rep., 7, 39836 (2017); https://doi.org/10.1038/srep39836
- L. Ma, R. Liu, H. Niu, F. Wang, L. Liu and Y. Huang, Electrochim. Acta, 222, 429 (2016); https://doi.org/10.1016/j.electacta.2016.10.195
- R. Liu, L. Ma, S. Huang, J. Mei, J. Xu and G. Yuan, RSC Adv., 6, 107426 (2016); https://doi.org/10.1039/C6RA21920A
- W. Zheng, R. Lv, B. Na, H. Liu, T. Jin and D. Yuan, J. Mater. Chem. A Mater. Energy Sustain., 5, 12969 (2017); https://doi.org/10.1039/C7TA01990D
- R. Kabiri and H. Namazi, Int. J. Polym. Mater., 65, 675 (2016); https://doi.org/10.1080/00914037.2016.1157799
- Y. Zhou, Y. Lee, H. Sun, J.M. Wallas, S.M. George and M. Xie, ACS Appl. Mater. Interfaces, 9, 9614 (2017); https://doi.org/10.1021/acsami.6b15628
- H.J. Kim, E.C. Yim, J.H. Kim, S.-J. Kim, J.-Y. Park and I.-K. Oh, Nano Energy, 33, 130 (2017); https://doi.org/10.1016/j.nanoen.2017.01.035
- S. Peter, N. Lyczko, D. Gopakumar, H.J. Maria, A. Nzihou and S. Thomas, J. Mater. Sci., 57, 6835 (2022); https://doi.org/10.1007/s10853-022-07070-6
- N. Mohammed, N. Grishkewich and K.C. Tam, Environ. Sci. Nano, 5, 623 (2018); https://doi.org/10.1039/C7EN01029J
- T.A. Dankovich and D.G. Gray, Environ. Sci. Technol., 45, 1992 (2011); https://doi.org/10.1021/es103302t
- J. Nemoto, T. Saito and A. Isogai, ACS Appl. Mater. Interfaces, 7, 19809 (2015); https://doi.org/10.1021/acsami.5b05841
- X. Wu, C. Lu, Z. Zhou, G. Yuan, R. Xiong and X. Zhang, Environ. Sci. Nano, 1, 71 (2014); https://doi.org/10.1039/c3en00066d
- J.T. Korhonen, M. Kettunen, R.H.A. Ras and O. Ikkala, ACS Appl. Mater. Interfaces, 3, 1813 (2011); https://doi.org/10.1021/am200475b
- J. Israelachvili and H. Wennerström, Nature, 379, 219 (1996); https://doi.org/10.1038/379219a0
- S. Huang and D. Wang, Angew. Chem. Int. Ed., 56, 9053 (2017); https://doi.org/10.1002/anie.201703913
- W. Wang, T.J. Zhang, D.W. Zhang, H.-Y. Li, Y.-R. Ma, L.-M. Qi, Y.-L. Zhou and X.-X. Zhang, Talanta, 84, 71 (2011); https://doi.org/10.1016/j.talanta.2010.12.015
- L. Hu, N. Liu, M. Eskilsson, G. Zheng, J. McDonough, L. Wågberg and Y. Cui, Nano Energy, 2, 138 (2013); https://doi.org/10.1016/j.nanoen.2012.08.008
- N. Mahfoudhi and S. Boufi, Cellulose, 24, 1171 (2017); https://doi.org/10.1007/s10570-017-1194-0
- X. Zhang, L. Wang, S. Dong, X. Zhang, Q. Wu, L. Zhao and Y. Shi, Chirality, 28, 376 (2016); https://doi.org/10.1002/chir.22578
- S. Dong, Y. Sun, X. Zhang, H. Li, G. Luo and L. Zhao, Carbohydr. Polym., 165, 359 (2017); https://doi.org/10.1016/j.carbpol.2017.02.060
- P. Cruz-Tato, E.O. Ortiz-Quiles, K. Vega-Figueroa, L. Santiago-Martoral, M. Flynn, L.M. Díaz-Vázquez and E. Nicolau, Environ. Sci. Technol., 51, 4585 (2017); https://doi.org/10.1021/acs.est.6b05955
- Q. Zhu, Y. Wang, M. Li, K. Liu, C. Hu, K. Yan, G. Sun, and D. Wang, Sep. Purif. Technol., 186, 70 (2017); https://doi.org/10.1016/j.seppur.2017.05.050
- A. Hashem, A.J. Fletcher, H. Younis, H. Mauof and A. Abou-Okeil, Int. J. Biol. Macromol., 164, 3193 (2020); https://doi.org/10.1016/j.ijbiomac.2020.08.159
- P. Liu, P.F. Borrell, M. Božič, V. Kokol, K. Oksman and A.P. Mathew, J. Hazard. Mater., 294, 177 (2015); https://doi.org/10.1016/j.jhazmat.2015.04.001
- A.D. Dwivedi, N.D. Sanandiya, J.P. Singh, S.M. Husnain, K.H. Chae, D.S. Hwang and Y.-S. Chang, ACS Sustain. Chem. Eng., 5, 518 (2017); https://doi.org/10.1021/acssuschemeng.6b01874
- A. Mautner, H.A. Maples, T. Kobkeatthawin, V. Kokol, Z. Karim, K. Li and A. Bismarck, Int. J. Environ. Sci. Technol., 13, 1861 (2016); https://doi.org/10.1007/s13762-016-1026-z
- L. Ansaloni, J. Salas-Gay, S. Ligi and M.G. Baschetti, J. Membr. Sci., 522, 216 (2017); https://doi.org/10.1016/j.memsci.2016.09.024
- R. Tankhiwale and S.K. Bajpai, Colloids Surf. B Biointerfaces, 69, 164 (2009); https://doi.org/10.1016/j.colsurfb.2008.11.004
- A. Fernández, P. Picouet and E. Lloret, Int. J. Food Microbiol., 142, 222 (2010); https://doi.org/10.1016/j.ijfoodmicro.2010.07.001
- A.C. Balazs, T. Emrick and T.P. Russell, Science, 314, 1107 (2006); https://doi.org/10.1126/science.1130557
- T. Jiang, L. Liu and J. Yao, Fibers Polym., 12, 620 (2011); https://doi.org/10.1007/s12221-011-0620-4
- S.S. Kim, J.E. Park and J. Lee, J. Appl. Polym. Sci., 119, 2261 (2011); https://doi.org/10.1002/app.32975
- H. Wei, K. Rodriguez, S. Renneckar and P.J. Vikesland, Environ. Sci. Nano, 1, 302 (2014); https://doi.org/10.1039/C4EN00059E
- P.A.A.P. Marques, H.I.S. Nogueira, R.J.B. Pinto, C.P. Neto and T. Trindade, J. Raman Spectrosc., 39, 439 (2008); https://doi.org/10.1002/jrs.1853
- A.M. El-Nahas, T.A. Salaheldin, T. Zaki, H.H. El-Maghrabi, A.M. Marie, S.M. Morsy and N.K. Allam, Chem. Eng. J., 322, 167 (2017); https://doi.org/10.1016/j.cej.2017.04.031
- X. An, Y. Long and Y. Ni, Carbohydr. Polym., 156, 253 (2017); https://doi.org/10.1016/j.carbpol.2016.08.099
- R.J.B. Pinto, M.C. Neves, C.P. Neto and T. Trindade, in eds.: F. Ebrahimi, Composites of Cellulose and Metal Nanoparticles, In: Nanocomposites - New Trends and Developments, IntechOpen (2012).
- D. Sun, J. Yang, J. Li, J. Yu, X. Xu and X. Yang, Appl. Surf. Sci., 256, 2241 (2010); https://doi.org/10.1016/j.apsusc.2009.10.034
- C.M. Cirtiu, A.F. Dunlop-Brière and A. Moores, Green Chem., 13, 288 (2011); https://doi.org/10.1039/C0GC00326C
- Y. Li, L. Xu, B. Xu, Z. Mao, H. Xu, Y. Zhong, L. Zhang, B. Wang and X. Sui, ACS Appl. Mater. Interfaces, 9, 17155 (2017); https://doi.org/10.1021/acsami.7b03600
- M. Kaushik, K. Basu, C. Benoit, C.M. Cirtiu, H. Vali and A. Moores, J. Am. Chem. Soc., 137, 6124 (2015); https://doi.org/10.1021/jacs.5b02034
- H. Koga, A. Azetsu, E. Tokunaga, T. Saito, A. Isogai and T. Kitaoka, J. Mater. Chem., 22, 5538 (2012); https://doi.org/10.1039/c2jm15661j
- K.A. Salmeia, M. Jovic, A. Ragaisiene, Z. Rukuiziene, R. Milasius, D. Mikucioniene and S. Gaan, Polymers, 8, 293 (2016); https://doi.org/10.3390/polym8080293
- H. Horacek and S. Pieh, Polym. Int., 49, 1106 (2000); https://doi.org/10.1002/1097-0126(200010)49:10<1106::AID-PI539>3.0.CO;2-I
- F.-Y. Hshieh and H.D. Beeson, Fire Mater., 19, 233 (1995); https://doi.org/10.1002/fam.810190506
- V. Thakur, A. Guleria, S. Kumar, S. Sharma and K. Singh, Mater. Adv., 2, 1872 (2021); https://doi.org/10.1039/d1ma00049g
- I. Turku, A. Rohumaa, T. Tirri and L. Pulkkinen, Fire, 7, 31 (2024); https://doi.org/10.3390/fire7010031
- J.A. Sirviö, T. Hasa, J. Ahola, H. Liimatainen, J. Niinimäki and O. Hormi, Carbohydr. Polym., 133, 524 (2015); https://doi.org/10.1016/j.carbpol.2015.06.090
- M. Ghanadpour, F. Carosio, P.T. Larsson and L. Wågberg, Biomacromolecules, 16, 3399 (2015); https://doi.org/10.1021/acs.biomac.5b01117
- B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti and L. Bergström, Nat. Nanotechnol., 10, 277 (2015); https://doi.org/10.1038/nnano.2014.248
- M.B. Agustin, F. Nakatsubo and H. Yano, Carbohydr. Polym., 164, 1 (2017); https://doi.org/10.1016/j.carbpol.2017.01.084
- N. Lavoine, J. Bras, T. Saito and A. Isogai, J. Polym. Sci. A Polym. Chem., 55, 1750 (2017); https://doi.org/10.1002/pola.28541
References
B.K. Alias, S. Peter, N. Lyczko, A. Nzihou, H.J. Maria and S. Thomas, Mater. Today Sustain., 24, 100510 (2023); https://doi.org/10.1016/j.mtsust.2023.100510
R.H. Atalla and D.L. VanderHart, Science, 223, 283 (1984); https://doi.org/10.1126/science.223.4633.283.
M.N. Norizan, S.S. Shazleen, A.H. Alias, F.A. Sabaruddin, M.R.M. Asyraf, E.S. Zainudin, N. Abdullah, M.S. Samsudin, S.H. Kamarudin, and M.N.F. Norrrahim, Nanomaterials, 12, 3483 (2022); https://doi.org/10.3390/nano12193483
D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray and A. Dorris, Angew. Chem. Int. Ed., 50, 5438 (2011); https://doi.org/10.1002/anie.201001273
H.K. Pradeep, D.H. Patel, S. Sahana, N. Abhishek, H. Jeevan, V. Karthik, K.V. Tejasvini and D.V. Pattanashetty, Asian J. Chem., 37, 145 (2024); https://doi.org/10.14233/ajchem.2025.32878
S.M. Choi, K.M. Rao, S.M. Zo, E.J. Shin and S.S. Han, Polymers, 14, 1080 (2022); https://doi.org/10.3390/polym14061080
R. Nayak, D. Cleveland, G. Tran and F. Joseph, J. Mater. Sci., 59, 6685 (2024); https://doi.org/10.1007/s10853-024-09577-6
D. Gautam, Y.K. Walia and V. Rana, Asian J. Chem., 37, 340 (2025); https://doi.org/10.14233/ajchem.2025.33005
R.M. Santos, W.P. Flauzino Neto, H.A. Silvério, D.F. Martins, N.O. Dantas and D. Pasquini, Ind. Crops Prod., 50, 707 (2013); https://doi.org/10.1016/j.indcrop.2013.08.049
R.J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, Chem. Soc. Rev., 40, 3941 (2011); https://doi.org/10.1039/c0cs00108b
S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, S.J. Rowan, J.R. Capadona, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A.N. Nakagaito, A. Mangalam, J. Simonsen, A.S. Benight, A. Bismarck, L.A. Berglund and T. Peijs, J. Mater. Sci., 45, 1 (2010); https://doi.org/10.1007/s10853-009-3874-0
H. Kargarzadeh, M. Mariano, J. Huang, N. Lin, I. Ahmad, A. Dufresne and S. Thomas, Polymer, 132, 368 (2017); https://doi.org/10.1016/j.polymer.2017.09.043
A. Dufresne, Curr. For. Rep., 5, 76 (2019); https://doi.org/10.1007/s40725-019-00088-1
P. Kaur, N. Sharma, M. Munagala, R. Rajkhowa, B. Aallardyce, Y. Shastri and R. Agrawal, Front. Nanotechnol., 3, 747329 (2021); https://doi.org/10.3389/fnano.2021.747329
A. Isogai, T. Saito and H. Fukuzumi, Nanoscale, 3, 71 (2011); https://doi.org/10.1039/C0NR00583E
M.J. Cho and B.D. Park, J. Ind. Eng. Chem., 17, 36 (2011); https://doi.org/10.1016/j.jiec.2010.10.006
E.G. Bacha, H.D. Demsash, L.D. Shumi and B.E. Debesa, Adv. Polym. Technol., 2022, 1 (2022); https://doi.org/10.1155/2022/6947591
H. Xu, Y. Liu, Y. Xie, E. Zhu, Z. Shi, Q. Yang and C. Xiong, Cellulose, 26, 8645 (2019); https://doi.org/10.1007/s10570-019-02689-2
P.G. Gan, S.T. Sam, M.F. Abdullah and M.F. Omar, J. Appl. Polym. Sci., 137, 48544 (2020); https://doi.org/10.1002/app.48544
J. Panta, A.N. Rider, J. Wang, R. Yang, N. Brack and Y.X. Zhang, Appl. Surf. Sci., 634, 157691 (2023); https://doi.org/10.1016/j.apsusc.2023.157691
K. Heise, E. Kontturi, Y. Allahverdiyeva, T. Tammelin, M.B. Linder, Nonappa and O. Ikkala, Adv. Mater., 33, 2004349 (2021); https://doi.org/10.1002/adma.202004349
D. Trache, A.F. Tarchoun, M. Derradji, T.S. Hamidon, N. Masruchin, N. Brosse and M.H. Hussin, Front Chem., 8, 535734 (2020); https://doi.org/10.3389/FCHEM.2020.00392/XML
A. Dufresne, Mater. Today, 16, 220 (2013); https://doi.org/10.1016/j.mattod.2013.06.004.
Y. Xue, Z. Mou and H. Xiao, Nanoscale, 9, 14758 (2017); https://doi.org/10.1039/C7NR04994C
L. Bacakova, J. Pajorova, M. Tomkova, R. Matejka, J. Stepanovska, A. Broz, S. Prazak, A. Skogberg, S. Siljander and P. Kallio, Nanomaterials, 10, 196 (2020); https://doi.org/10.3390/nano10020196
R.K. Mishra, A. Sabu and S.K. Tiwari, J. Saudi Chem. Soc., 22, 949 (2018); https://doi.org/10.1016/j.jscs.2018.02.005
D. Hu and W. Ma, Ind. Eng. Chem. Res., 59, 19465 (2020); https://doi.org/10.1021/acs.iecr.0c04319
W.C. Lum, S.H. Lee, Z. Ahmad, J.A. Halip and K.L. Chin, in eds.: S. Thomas, Y. Grohens and Y. Pottathara, Lignocellulosic Nanomaterials for Construction and Building Applications, In: Industrial Applications of Nanomaterials, Elsevier, Chap. 15, pp. 423-439 (2015).
M. Fumagalli, J. Berriot, B. De Gaudemaris, A. Veyland, J.-L. Putaux, S. Molina-Boisseau and L. Heux, Soft Matter, 14, 2638 (2018); https://doi.org/10.1039/C8SM00210J
L. Brinchi, F. Cotana, E. Fortunati and J.M. Kenny, Carbohydr. Polym., 94, 154 (2013); https://doi.org/10.1016/j.carbpol.2013.01.033
Y. Habibi, L.A. Lucia and O.J. Rojas, Chem. Rev., 110, 3479 (2010); https://doi.org/10.1021/cr900339w
M. He, J. Zhou, H. Zhang, Z. Luo and J. Yao, J. Appl. Polym. Sci., 132, app.42488 (2015); https://doi.org/10.1002/app.42488
L. Gan, J. Liao, N. Lin, C. Hu, H. Wang and J. Huang, ACS Omega, 2, 4725 (2017); https://doi.org/10.1021/acsomega.7b00532
A.F. Jozala, L.C. de Lencastre-Novaes, A.M. Lopes, V. de Carvalho Santos-Ebinuma, P.G. Mazzola, A. Pessoa-Jr, D. Grotto, M. Gerenutti and M.V. Chaud, Appl. Microbiol. Biotechnol., 100, 2063 (2016); https://doi.org/10.1007/s00253-015-7243-4
F. Mohammadkazemi, R. Aguiar and N. Cordeiro, Cellulose, 24, 1803 (2017); https://doi.org/10.1007/s10570-017-1210-4
T. Tabarsa, S. Sheykhnazari, A. Ashori, M. Mashkour and A. Khazaeian, Int. J. Biol. Macromol., 101, 334 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.108
M.V.G. Zimmermann, M.P. da Silva, R.M. Campomanes-Santana and A.J. Zattera, J. Appl. Polym. Sci., 134, app.44760 (2017); https://doi.org/10.1002/app.44760
B. Wei, H. Li, Q. Li, Y. Wen, L. Sun, P. Wei, W. Pu and Y. Li, Langmuir, 33, 5127 (2017); https://doi.org/10.1021/acs.langmuir.7b00387
S.S. Nair, J.Y. Zhu, Y. Deng and A.J. Ragauskas, Sustain. Chem. Process., 2, 23 (2014); https://doi.org/10.1186/s40508-014-0023-0
H.M.C. Azeredo, M.F. Rosa and L.H.C. Mattoso, Ind. Crops Prod., 97, 664 (2017); https://doi.org/10.1016/j.indcrop.2016.03.013
M.A. Hubbe, A. Ferrer, P. Tyagi, Y. Yin, C. Salas, L. Pal and O.J. Rojas, BioResources, 12, 2143 (2017); https://doi.org/10.15376/biores.12.1.Hubbe
A. Ferrer, L. Pal and M. Hubbe, Ind. Crops Prod., 95, 574 (2017); https://doi.org/10.1016/j.indcrop.2016.11.012
C. Aulin and G. Ström, Ind. Eng. Chem. Res., 52, 2582 (2013); https://doi.org/10.1021/ie301785a
K. Syverud and P. Stenius, Cellulose, 16, 75 (2009); https://doi.org/10.1007/s10570-008-9244-2
Y. Choi and J. Simonsen, J. Nanosci. Nanotechnol., 6, 633 (2006); https://doi.org/10.1166/jnn.2006.132
M. Minelli, M.G. Baschetti, F. Doghieri, M. Ankerfors, T. Lindström, I. Siró and D. Plackett, J. Membr. Sci., 358, 67 (2010); https://doi.org/10.1016/j.memsci.2010.04.030
F. Li, P. Biagioni, M. Bollani, A. Maccagnan and L. Piergiovanni, Cellulose, 20, 2491 (2013); https://doi.org/10.1007/s10570-013-0015-3
A.B. Perumal, R.B. Nambiar, C. Anandharamakrishnan and J.A. Moses, Food Hydrocoll., 127, 107484 (2022); https://doi.org/10.1016/j.foodhyd.2022.107484
M. Nogi and H. Yano, Appl. Phys. Lett., 94, 233117 (2009); https://doi.org/10.1063/1.3154547
M. Nogi, S. Iwamoto, A.N. Nakagaito and H. Yano, Adv. Mater., 21, 1595 (2009); https://doi.org/10.1002/adma.200803174
M. Nogi and H. Yano, Adv. Mater., 20, 1849 (2008); https://doi.org/10.1002/adma.200702559
M.C. Hsieh, H. Koga, K. Suganuma and M. Nogi, Sci. Rep., 71, 41590 (2017); https://doi.org/10.1038/srep41590
C. Honorato, V. Kumar, J. Liu, H. Koivula, C. Xu and M. Toivakka, J. Mater. Sci., 50, 7343 (2015); https://doi.org/10.1007/s10853-015-9291-7
C. Aulin, M. Gällstedt and T. Lindström, Cellulose, 17, 559 (2010); https://doi.org/10.1007/s10570-009-9393-y
G. Chinga-Carrasco, N. Averianova, M. Gibadullin, V. Petrov, I. Leirset and K. Syverud, Micron, 44, 331 (2013); https://doi.org/10.1016/j.micron.2012.08.005
J.M. Lagaron, R. Catalá and R. Gavara, Mater. Sci. Technol., 20, 1 (2004); https://doi.org/10.1179/026708304225010442
M. Österberg, J. Vartiainen, J. Lucenius, U. Hippi, J. Seppälä, R. Serimaa and J. Laine, ACS Appl. Mater. Interfaces, 5, 4640 (2013); https://doi.org/10.1021/am401046x
J. Vartiainen, Y. Shen, T. Kaljunen, T. Malm, M. Vähä-Nissi, M. Putkonen and A. Harlin, J. Appl. Polym. Sci., 133, 42260 (2016); https://doi.org/10.1002/app.42260
M. Vähä-Nissi, H.M. Koivula, H.M. Räisänen, J. Vartiainen, P. Ragni, E. Kenttä, T. Kaljunen, T. Malm, H. Minkkinen and A. Harlin, J. Appl. Polym. Sci., 134, 44830 (2017); https://doi.org/10.1002/app.44830
M. Schade, S. Weinkoetz and J. Assmann, Lignocellulosic Material Useful e.g. for Producing Articles e.g. Packaging Materials, Comprises Lignocellulose‑Containing Material, Microfibrillated Cellulose, Binder Optionally with Curing Agent, Expanded Plastic Particles and Additives, WO Patent 2015052028 A1 (2015)
H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto and A. Isogai, Biomacromolecules, 10, 162 (2009); https://doi.org/10.1021/bm801065u
S. Fujisawa, Y. Okita, H. Fukuzumi, T. Saito and A. Isogai, Carbohydr. Polym., 84, 579 (2011); https://doi.org/10.1016/j.carbpol.2010.12.029
M.S. Peresin, K. Kammiovirta, H. Heikkinen, L.-S. Johansson, J. Vartiainen, H. Setälä, M. Österberg and T. Tammelin, Carbohydr. Polym., 174, 309 (2017); https://doi.org/10.1016/j.carbpol.2017.06.066
W. Yang, H. Bian, L. Jiao, W. Wu, Y. Deng and H. Dai, RSC Adv., 7, 31567 (2017); https://doi.org/10.1039/C7RA05009G
X. Tian, D. Yan, Q. Lu and X. Jiang, Cellulose, 24, 163 (2017); https://doi.org/10.1007/s10570-016-1119-3
K. Yao, S. Huang, H. Tang, Y. Xu, G. Buntkowsky, L.A. Berglund and Q. Zhou, ACS Appl. Mater. Interfaces, 9, 20169 (2017); https://doi.org/10.1021/acsami.7b02177
X. Feng, Y. Zhao, Y. Jiang, M. Miao, S. Cao and J. Fang, Carbohydr. Polym., 161, 253 (2017); https://doi.org/10.1016/j.carbpol.2017.01.030
N.C.T. Martins, C.S.R. Freire, C.P. Neto, A.J.D. Silvestre, J. Causio, G. Baldi, P. Sadocco and T. Trindade, Colloids Surf. A Physicochem. Eng. Asp., 417, 111 (2013); https://doi.org/10.1016/j.colsurfa.2012.10.042
J. Henschen, P.A. Larsson, J. Illergård, M. Ek and L. Wågberg, Colloids Surf. B Biointerfaces, 151, 224 (2017); https://doi.org/10.1016/j.colsurfb.2016.12.018
M.A. El-Samahy, S.A.A. Mohamed, M.H. Abdel Rehim and M.E. Mohram, Carbohydr. Polym., 168, 212 (2017); https://doi.org/10.1016/j.carbpol.2017.03.041
M.D. Sánchez-García, L. Hilliou and J.M. Lagarón, J. Agric. Food Chem., 58, 12847 (2010); https://doi.org/10.1021/jf102764e
V. Sedlarik, O. Otgonzul, T. Kitano, A. Gregorova, M. Hrabalova, I. Junkar, U. Cvelbar, M. Mozetic and P. Saha, J. Macromol. Sci. Part B Phys., 51, 982 (2012); https://doi.org/10.1080/00222348.2011.610265
N. Ljungberg and B. Wesslén, J. Appl. Polym. Sci., 86, 1227 (2002); https://doi.org/10.1002/app.11077
Z. Song, H. Xiao and Y. Zhao, Carbohydr. Polym., 111, 442 (2014); https://doi.org/10.1016/j.carbpol.2014.04.049
C. Amara, A. El Mahdi, R. Medimagh and K. Khwaldia, Curr. Opin. Green Sustain. Chem., 31, 100512 (2021); https://doi.org/10.1016/j.cogsc.2021.100512
I. Siro and D. Plackett, Cellulose, 17, 459 (2010); https://doi.org/10.1007/s10570-010-9405-y
C. Campano, A. Balea, A. Blanco and C. Negro, Cellulose, 23, 57 (2016); https://doi.org/10.1007/s10570-015-0802-0
W.K. Czaja, D.J. Young, M. Kawecki and R.M. Brown, Biomacromolecules, 8, 1 (2007); https://doi.org/10.1021/bm060620d
H. Ullah, F. Wahid, H.A. Santos and T. Khan, Carbohydr. Polym., 150, 330 (2016); https://doi.org/10.1016/j.carbpol.2016.05.029
C. Zhijiang and Y. Guang, J. Appl. Polym. Sci., 120, 2938 (2011); https://doi.org/10.1002/app.33318
S. Saska, L.N. Teixeira, L.M.S. de Castro Raucci, R.M. Scarel-Caminaga, L.P. Franchi, R.A. dos Santos, S.H. Santagneli, M.V. Capela, P.T. de Oliveira, C.S. Takahashi, A.M.M. Gaspar, Y. Messaddeq, S.J.L. Ribeiro and R. Marchetto, Int. J. Biol. Macromol., 103, 467 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.086
C. Guise and R. Fangueiro, RILEM Bookseries, 12, 155 (2016); https://doi.org/10.1007/978-94-017-7515-1_12
T. Petreus, B.A. Stoica, O. Petreus, A. Goriuc, C.-E. Cotrutz, I.-V. Antoniac and L. Barbu-Tudoran, J. Mater. Sci. Mater. Med., 25, 1115 (2014); https://doi.org/10.1007/s10856-014-5146-z
A.L. Menas, N. Yanamala, M.T. Farcas, M. Russo, S. Friend, A. Star, P.M. Fournier, I. Iavicoli, G.V. Shurin, U.B. Vogel, B. Fadeel, D. Beezhold, E.R. Kisin and A.A. Shvedova, Chemosphere, 171, 671 (2017); https://doi.org/10.1016/j.chemosphere.2016.12.105
K. Hua, E. Ålander, T. Lindström, A. Mihranyan, M. Strømme and N. Ferraz, Biomacromolecules, 16, 2787 (2015); https://doi.org/10.1021/acs.biomac.5b00727
J.C. Fricain, P.L. Granja, M.A. Barbosa, B. De Jéso, N. Barthe and C. Baquey, Biomaterials, 23, 971 (2002); https://doi.org/10.1016/S0142-9612(01)00152-1
A. Gumrah Dumanli, Curr. Med. Chem., 24, 512 (2017); https://doi.org/10.2174/0929867323666161014124008
H. Mertaniemi, C. Escobedo-Lucea, A. Sanz-Garcia, C. Gandía, A. Mäkitie, J. Partanen, O. Ikkala and M. Yliperttula, Biomaterials, 82, 208 (2016); https://doi.org/10.1016/j.biomaterials.2015.12.020
A. Basu, J. Lindh, E. Ålander, M. Strømme and N. Ferraz, Carbohydr. Polym., 174, 299 (2017); https://doi.org/10.1016/j.carbpol.2017.06.073
N.E. Zander, H. Dong, J. Steele and J.T. Grant, ACS Appl. Mater. Interfaces, 6, 18502 (2014); https://doi.org/10.1021/am506007z
G.K. Tummala, T. Joffre, R. Rojas, C. Persson and A. Mihranyan, Soft Matter, 13, 3936 (2017); https://doi.org/10.1039/C7SM00677B
N. Lin, A. Gèze, D. Wouessidjewe, J. Huang and A. Dufresne, ACS Appl. Mater. Interfaces, 8, 6880 (2016); https://doi.org/10.1021/acsami.6b00555
K.J. De France, T. Hoare and E.D. Cranston, Chem. Mater., 29, 4609 (2017); https://doi.org/10.1021/acs.chemmater.7b00531
N. Lavoine, I. Desloges and J. Bras, Carbohydr. Polym., 103, 528 (2014); https://doi.org/10.1016/j.carbpol.2013.12.035
S. Dong, H.J. Cho, Y.W. Lee and M. Roman, Biomacromolecules, 15, 1560 (2014); https://doi.org/10.1021/bm401593n
T.M.S.U. Gunathilake, Y.C. Ching and C.H. Chuah, Polymers, 9, 64 (2017); https://doi.org/10.3390/polym9020064
S. Ahankari, P. Paliwal, A. Subhedar and H. Kargarzadeh, ACS Nano, 15, 3849 (2021); https://doi.org/10.1021/acsnano.0c09678
L. Saïdi, C. Vilela, H. Oliveira, A.J.D. Silvestre and C.S.R. Freire, Carbohydr. Polym., 169, 357 (2017); https://doi.org/10.1016/j.carbpol.2017.04.030
S. Salimi, R. Sotudeh-Gharebagh, R. Zarghami, S.Y. Chan and K.H. Yuen, ACS Sustain. Chem.& Eng., 7, 15800 (2019); https://doi.org/10.1021/acssuschemeng.9b02744
G. Metreveli, L. Wågberg, E. Emmoth, S. Belák, M. Strømme and A. Mihranyan, Adv. Healthc. Mater., 3, 1546 (2014); https://doi.org/10.1002/adhm.201300641
H.K. Pradeep and D.H. Patel, Asian J. Chem., 36, 2079 (2024); https://doi.org/10.14233/ajchem.2024.32127
M. Asper, T. Hanrieder, A. Quellmalz and A. Mihranyan, Biologicals, 43, 452 (2015); https://doi.org/10.1016/j.biologicals.2015.08.001
S. Gustafsson and A. Mihranyan, ACS Appl. Mater. Interfaces, 8, 13759 (2016); https://doi.org/10.1021/acsami.6b03093
A. Quellmalz and A. Mihranyan, ACS Biomater. Sci. Eng., 1, 271 (2015); https://doi.org/10.1021/ab500161x
G.A. Junter and L. Lebrun, Rev. Environ. Sci. Biotechnol., 16, 455 (2017); https://doi.org/10.1007/s11157-017-9434-1
J.O. Zoppe, V. Ruottinen, J. Ruotsalainen, S. Rönkkö, L.-S. Johansson, A. Hinkkanen, K. Järvinen and J. Seppälä, Biomacromolecules, 15, 1534 (2014); https://doi.org/10.1021/bm500229d
J.V. Edwards, N. Prevost, K. Sethumadhavan, A. Ullah and B. Condon, Cellulose, 20, 1223 (2013); https://doi.org/10.1007/s10570-013-9901-y
K. Markstedt, A. Mantas, I. Tournier, H. Martínez Ávila, D. Hägg and P. Gatenholm, Biomacromolecules, 16, 1489 (2015); https://doi.org/10.1021/acs.biomac.5b00188
J. Leppiniemi, P. Lahtinen, A. Paajanen, R. Mahlberg, S. Metsä-Kortelainen, T. Pinomaa, H. Pajari, I. Vikholm-Lundin, P. Pursula and V.P. Hytönen, ACS Appl. Mater. Interfaces, 9, 21959 (2017); https://doi.org/10.1021/acsami.7b02756
M.Y. Leong, Y.L. Kong, M.Y. Harun, C.Y. Looi and W.F. Wong, Carbohydr. Res., 532, 108899 (2023); https://doi.org/10.1016/j.carres.2023.108899
M.J. Serpe, Y. Kang and Q.M. Zhang, Photonic Materials for Sensing, Biosensing and Display Devices, Springer Series in Materials Science (SSMATERIALS) Springer International Publishing AG, vol. 229 (2016).
L.H. Nguyen, S. Naficy, R. Chandrawati and F. Dehghani, Adv. Mater. Interfaces, 6, 1900424 (2019); https://doi.org/10.1002/admi.201900424
H. Golmohammadi, E. Morales-Narváez, T. Naghdi and A. Merkoçi, Chem. Mater., 29, 5426 (2017); https://doi.org/10.1021/acs.chemmater.7b01170
R. Mangayil, S. Rajala, A. Pammo, E. Sarlin, J. Luo, V. Santala, M. Karp and S. Tuukkanen, ACS Appl. Mater. Interfaces, 9, 19048 (2017); https://doi.org/10.1021/acsami.7b04927
A. Subhedar, S. Bhadauria, S. Ahankari and H. Kargarzadeh, Int. J. Biol. Macromol., 166, 587 (2021); https://doi.org/10.1016/j.ijbiomac.2020.10.217
Y. Gao and Z. Jin, ACS Sustain. Chem.& Eng., 6, 6192 (2018); https://doi.org/10.1021/acssuschemeng.7b04899
S. Lombardo, S. Eyley, C. Schütz, H. van Gorp, S. Rosenfeldt, G. Van den Mooter and W. Thielemans, Langmuir, 33, 5473 (2017); https://doi.org/10.1021/acs.langmuir.7b00710
Z. Li, C. Yao, F. Wang, Z. Cai and X. Wang, Nanotechnology, 25, 504005 (2014); https://doi.org/10.1088/0957-4484/25/50/504005
D.J. Gardner, G.S. Oporto, R. Mills and M.A.S.A. Samir, J. Adhes. Sci. Technol., 22, 545 (2008); https://doi.org/10.1163/156856108X295509
R. Weishaupt, G. Siqueira, M. Schubert, M.M. Kämpf, T. Zimmermann, K. Maniura-Weber and G. Faccio, Adv. Funct. Mater., 27, 1604291 (2017); https://doi.org/10.1002/adfm.201604291
X. Du, Z. Zhang, W. Liu and Y. Deng, Nano Energy, 35, 299 (2017); https://doi.org/10.1016/j.nanoen.2017.04.001
G. Nyström, A. Mihranyan, A. Razaq, T. Lindström, L. Nyholm and M. Strømme, J. Phys. Chem. B, 114, 4178 (2010); https://doi.org/10.1021/jp911272m
Z. Wang, D.O. Carlsson, P. Tammela, K. Hua, P. Zhang, L. Nyholm and M. Strømme, ACS Nano, 9, 7563 (2015); https://doi.org/10.1021/acsnano.5b02846
W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink, J. Simonsen and X. Ji, J. Mater. Chem. A Mater. Energy Sustain., 1, 10662 (2013); https://doi.org/10.1039/c3ta12389h
C. Legnani, C. Vilani, V.L. Calil, H.S. Barud, W.G. Quirino, C.A. Achete, S.J.L. Ribeiro and M. Cremona, Thin Solid Films, 517, 1016 (2008); https://doi.org/10.1016/j.tsf.2008.06.011
F. Hoeng, J. Bras, E. Gicquel, G. Krosnicki and A. Denneulin, RSC Adv., 7, 15372 (2017); https://doi.org/10.1039/C6RA23667G
L. Valentini, S. Bittolo Bon, M. Cardinali, E. Fortunati and J.M. Kenny, Mater. Lett., 126, 55 (2014); https://doi.org/10.1016/j.matlet.2014.04.003
H. Jin, G. Marin, A. Giri, T. Tynell, M. Gestranius, B.P. Wilson, E. Kontturi, T. Tammelin, P.E. Hopkins and M. Karppinen, J. Mater. Sci., 52, 6093 (2017); https://doi.org/10.1007/s10853-017-0848-5
J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings and L. Hu, ACS Nano, 7, 2106 (2013); https://doi.org/10.1021/nn304407r
M.C. Hsieh, C. Kim, M. Nogi and K. Suganuma, Nanoscale, 5, 9289 (2013); https://doi.org/10.1039/c3nr01951a
Y. Shin, I.T. Bae, B.W. Arey and G.J. Exarhos, Mater. Lett., 61, 3215 (2007); https://doi.org/10.1016/j.matlet.2006.11.036
Y. Shin, J.M. Blackwood, I.T. Bae, B.W. Arey and G.J. Exarhos, Mater. Lett., 61, 4297 (2007); https://doi.org/10.1016/j.matlet.2007.01.091
J. Xue, F. Song, X.W. Yin, X. Wang and Y. Wang, ACS Appl. Mater. Interfaces, 7, 10076 (2015); https://doi.org/10.1021/acsami.5b02011
N.M. Park, J.B. Koo, J.Y. Oh, H.J. Kim, C.W. Park, S.-D. Ahn and S.W. Jung, Mater. Lett., 196, 12 (2017); https://doi.org/10.1016/j.matlet.2017.03.003
F. Hoeng, A. Denneulin and J. Bras, Nanoscale, 8, 13131 (2016); https://doi.org/10.1039/C6NR03054H
Z. Karim, M. Hakalahti, T. Tammelin and A.P. Mathew, RSC Adv., 7, 5232 (2017); https://doi.org/10.1039/C6RA25707K
Y. Li, S. Yu, P. Chen, R. Rojas, A. Hajian and L. Berglund, Nano Energy, 34, 541 (2017); https://doi.org/10.1016/j.nanoen.2017.03.010
N.M. Julkapli and S. Bagheri, Polym. Adv. Technol., 28, 1583 (2017); https://doi.org/10.1002/pat.4074
Z. Wang, P. Tammela, M. Strømme and L. Nyholm, Adv. Energy Mater., 7, 1700130 (2017); https://doi.org/10.1002/aenm.201700130
R. Reshmy, E. Philip, D. Thomas, A. Madhavan, R. Sindhu, P. Binod, S. Varjani, M.K. Awasthi and A. Pandey, Bioengineered, 12, 11463 (2021); https://doi.org/10.1080/21655979.2021.2009753
M. Hamedi, E. Karabulut, A. Marais, A. Herland, G. Nyström and L. Wågberg, Angew. Chem. Int. Ed., 52, 12038 (2013); https://doi.org/10.1002/anie.201305137
N. Blomquist, T. Wells, B. Andres, J. Bäckström, S. Forsberg and H. Olin, Sci. Rep., 7, 39836 (2017); https://doi.org/10.1038/srep39836
L. Ma, R. Liu, H. Niu, F. Wang, L. Liu and Y. Huang, Electrochim. Acta, 222, 429 (2016); https://doi.org/10.1016/j.electacta.2016.10.195
R. Liu, L. Ma, S. Huang, J. Mei, J. Xu and G. Yuan, RSC Adv., 6, 107426 (2016); https://doi.org/10.1039/C6RA21920A
W. Zheng, R. Lv, B. Na, H. Liu, T. Jin and D. Yuan, J. Mater. Chem. A Mater. Energy Sustain., 5, 12969 (2017); https://doi.org/10.1039/C7TA01990D
R. Kabiri and H. Namazi, Int. J. Polym. Mater., 65, 675 (2016); https://doi.org/10.1080/00914037.2016.1157799
Y. Zhou, Y. Lee, H. Sun, J.M. Wallas, S.M. George and M. Xie, ACS Appl. Mater. Interfaces, 9, 9614 (2017); https://doi.org/10.1021/acsami.6b15628
H.J. Kim, E.C. Yim, J.H. Kim, S.-J. Kim, J.-Y. Park and I.-K. Oh, Nano Energy, 33, 130 (2017); https://doi.org/10.1016/j.nanoen.2017.01.035
S. Peter, N. Lyczko, D. Gopakumar, H.J. Maria, A. Nzihou and S. Thomas, J. Mater. Sci., 57, 6835 (2022); https://doi.org/10.1007/s10853-022-07070-6
N. Mohammed, N. Grishkewich and K.C. Tam, Environ. Sci. Nano, 5, 623 (2018); https://doi.org/10.1039/C7EN01029J
T.A. Dankovich and D.G. Gray, Environ. Sci. Technol., 45, 1992 (2011); https://doi.org/10.1021/es103302t
J. Nemoto, T. Saito and A. Isogai, ACS Appl. Mater. Interfaces, 7, 19809 (2015); https://doi.org/10.1021/acsami.5b05841
X. Wu, C. Lu, Z. Zhou, G. Yuan, R. Xiong and X. Zhang, Environ. Sci. Nano, 1, 71 (2014); https://doi.org/10.1039/c3en00066d
J.T. Korhonen, M. Kettunen, R.H.A. Ras and O. Ikkala, ACS Appl. Mater. Interfaces, 3, 1813 (2011); https://doi.org/10.1021/am200475b
J. Israelachvili and H. Wennerström, Nature, 379, 219 (1996); https://doi.org/10.1038/379219a0
S. Huang and D. Wang, Angew. Chem. Int. Ed., 56, 9053 (2017); https://doi.org/10.1002/anie.201703913
W. Wang, T.J. Zhang, D.W. Zhang, H.-Y. Li, Y.-R. Ma, L.-M. Qi, Y.-L. Zhou and X.-X. Zhang, Talanta, 84, 71 (2011); https://doi.org/10.1016/j.talanta.2010.12.015
L. Hu, N. Liu, M. Eskilsson, G. Zheng, J. McDonough, L. Wågberg and Y. Cui, Nano Energy, 2, 138 (2013); https://doi.org/10.1016/j.nanoen.2012.08.008
N. Mahfoudhi and S. Boufi, Cellulose, 24, 1171 (2017); https://doi.org/10.1007/s10570-017-1194-0
X. Zhang, L. Wang, S. Dong, X. Zhang, Q. Wu, L. Zhao and Y. Shi, Chirality, 28, 376 (2016); https://doi.org/10.1002/chir.22578
S. Dong, Y. Sun, X. Zhang, H. Li, G. Luo and L. Zhao, Carbohydr. Polym., 165, 359 (2017); https://doi.org/10.1016/j.carbpol.2017.02.060
P. Cruz-Tato, E.O. Ortiz-Quiles, K. Vega-Figueroa, L. Santiago-Martoral, M. Flynn, L.M. Díaz-Vázquez and E. Nicolau, Environ. Sci. Technol., 51, 4585 (2017); https://doi.org/10.1021/acs.est.6b05955
Q. Zhu, Y. Wang, M. Li, K. Liu, C. Hu, K. Yan, G. Sun, and D. Wang, Sep. Purif. Technol., 186, 70 (2017); https://doi.org/10.1016/j.seppur.2017.05.050
A. Hashem, A.J. Fletcher, H. Younis, H. Mauof and A. Abou-Okeil, Int. J. Biol. Macromol., 164, 3193 (2020); https://doi.org/10.1016/j.ijbiomac.2020.08.159
P. Liu, P.F. Borrell, M. Božič, V. Kokol, K. Oksman and A.P. Mathew, J. Hazard. Mater., 294, 177 (2015); https://doi.org/10.1016/j.jhazmat.2015.04.001
A.D. Dwivedi, N.D. Sanandiya, J.P. Singh, S.M. Husnain, K.H. Chae, D.S. Hwang and Y.-S. Chang, ACS Sustain. Chem. Eng., 5, 518 (2017); https://doi.org/10.1021/acssuschemeng.6b01874
A. Mautner, H.A. Maples, T. Kobkeatthawin, V. Kokol, Z. Karim, K. Li and A. Bismarck, Int. J. Environ. Sci. Technol., 13, 1861 (2016); https://doi.org/10.1007/s13762-016-1026-z
L. Ansaloni, J. Salas-Gay, S. Ligi and M.G. Baschetti, J. Membr. Sci., 522, 216 (2017); https://doi.org/10.1016/j.memsci.2016.09.024
R. Tankhiwale and S.K. Bajpai, Colloids Surf. B Biointerfaces, 69, 164 (2009); https://doi.org/10.1016/j.colsurfb.2008.11.004
A. Fernández, P. Picouet and E. Lloret, Int. J. Food Microbiol., 142, 222 (2010); https://doi.org/10.1016/j.ijfoodmicro.2010.07.001
A.C. Balazs, T. Emrick and T.P. Russell, Science, 314, 1107 (2006); https://doi.org/10.1126/science.1130557
T. Jiang, L. Liu and J. Yao, Fibers Polym., 12, 620 (2011); https://doi.org/10.1007/s12221-011-0620-4
S.S. Kim, J.E. Park and J. Lee, J. Appl. Polym. Sci., 119, 2261 (2011); https://doi.org/10.1002/app.32975
H. Wei, K. Rodriguez, S. Renneckar and P.J. Vikesland, Environ. Sci. Nano, 1, 302 (2014); https://doi.org/10.1039/C4EN00059E
P.A.A.P. Marques, H.I.S. Nogueira, R.J.B. Pinto, C.P. Neto and T. Trindade, J. Raman Spectrosc., 39, 439 (2008); https://doi.org/10.1002/jrs.1853
A.M. El-Nahas, T.A. Salaheldin, T. Zaki, H.H. El-Maghrabi, A.M. Marie, S.M. Morsy and N.K. Allam, Chem. Eng. J., 322, 167 (2017); https://doi.org/10.1016/j.cej.2017.04.031
X. An, Y. Long and Y. Ni, Carbohydr. Polym., 156, 253 (2017); https://doi.org/10.1016/j.carbpol.2016.08.099
R.J.B. Pinto, M.C. Neves, C.P. Neto and T. Trindade, in eds.: F. Ebrahimi, Composites of Cellulose and Metal Nanoparticles, In: Nanocomposites - New Trends and Developments, IntechOpen (2012).
D. Sun, J. Yang, J. Li, J. Yu, X. Xu and X. Yang, Appl. Surf. Sci., 256, 2241 (2010); https://doi.org/10.1016/j.apsusc.2009.10.034
C.M. Cirtiu, A.F. Dunlop-Brière and A. Moores, Green Chem., 13, 288 (2011); https://doi.org/10.1039/C0GC00326C
Y. Li, L. Xu, B. Xu, Z. Mao, H. Xu, Y. Zhong, L. Zhang, B. Wang and X. Sui, ACS Appl. Mater. Interfaces, 9, 17155 (2017); https://doi.org/10.1021/acsami.7b03600
M. Kaushik, K. Basu, C. Benoit, C.M. Cirtiu, H. Vali and A. Moores, J. Am. Chem. Soc., 137, 6124 (2015); https://doi.org/10.1021/jacs.5b02034
H. Koga, A. Azetsu, E. Tokunaga, T. Saito, A. Isogai and T. Kitaoka, J. Mater. Chem., 22, 5538 (2012); https://doi.org/10.1039/c2jm15661j
K.A. Salmeia, M. Jovic, A. Ragaisiene, Z. Rukuiziene, R. Milasius, D. Mikucioniene and S. Gaan, Polymers, 8, 293 (2016); https://doi.org/10.3390/polym8080293
H. Horacek and S. Pieh, Polym. Int., 49, 1106 (2000); https://doi.org/10.1002/1097-0126(200010)49:10<1106::AID-PI539>3.0.CO;2-I
F.-Y. Hshieh and H.D. Beeson, Fire Mater., 19, 233 (1995); https://doi.org/10.1002/fam.810190506
V. Thakur, A. Guleria, S. Kumar, S. Sharma and K. Singh, Mater. Adv., 2, 1872 (2021); https://doi.org/10.1039/d1ma00049g
I. Turku, A. Rohumaa, T. Tirri and L. Pulkkinen, Fire, 7, 31 (2024); https://doi.org/10.3390/fire7010031
J.A. Sirviö, T. Hasa, J. Ahola, H. Liimatainen, J. Niinimäki and O. Hormi, Carbohydr. Polym., 133, 524 (2015); https://doi.org/10.1016/j.carbpol.2015.06.090
M. Ghanadpour, F. Carosio, P.T. Larsson and L. Wågberg, Biomacromolecules, 16, 3399 (2015); https://doi.org/10.1021/acs.biomac.5b01117
B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti and L. Bergström, Nat. Nanotechnol., 10, 277 (2015); https://doi.org/10.1038/nnano.2014.248
M.B. Agustin, F. Nakatsubo and H. Yano, Carbohydr. Polym., 164, 1 (2017); https://doi.org/10.1016/j.carbpol.2017.01.084
N. Lavoine, J. Bras, T. Saito and A. Isogai, J. Polym. Sci. A Polym. Chem., 55, 1750 (2017); https://doi.org/10.1002/pola.28541