Copyright (c) 2026 Manu M B, P Deepika, Srikantamurthy N, Dr. Vinusha H M, S M Madan, Umesha K B

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterisation and in silico Evaluation of Imidazole-Based Schiff Base Transition Metal(II) Complexes with Antioxidant and Antidiabetic Potential
Corresponding Author(s) : K.B. Umesha
Asian Journal of Chemistry,
Vol. 38 No. 2 (2026): Vol 38 Issue 2, 2026
Abstract
In this work, few transition metal(II) complexes of Cu2+, Co2+, Ni2+ and Zn2+ were synthesised with imidazole-based Schiff base ligand, (E)-N-(4-chlorobenzo[d]thiazol-2-yl)-1-(1H-indole-3-yl)methanimine. These complexes were characterised by mass, NMR and FT-IR spectroscopies. The NMR and FT-IR spectral data confirmed coordination of the azomethine nitrogen and sulphur atoms with the metal centers. The physico-chemical properties, drug-likeness parameters and pharmacokinetic behaviour of the imidazole-based Schiff base ligand and its metal(II) complexes were predicted using the SwissADME web server. Bioactivity prediction and PASS analysis further validated the favourable drug-like characteristics of both the free ligand and its metal(II) complexes. Molecular docking studies were carried out using AutoDock Vina against selected biological targets, including an antioxidant enzyme (PDB ID: 1HD2), ferritin (PDB ID: 1FHA) and α-amylase (PDB ID: 2QV4). The docking results demonstrated strong binding affinities and significant intermolecular interactions with the active sites of the target proteins, thereby supporting the multifunctional therapeutic potential of the synthesized metal complexes. Notably, the compounds exhibited pronounced antioxidant and antidiabetic activities, underscoring their promise as effective bioactive agents. Overall, these findings suggest that the synthesized Schiff base metal(II) complexes represent promising candidates for further development as multifunctional therapeutic agents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Boulechfar, H. Ferkous, A. Delimi, A. Djedouani, A. Kahlouche, A. Boublia, A.S. Darwish, T. Lemaoui, R. Verma and Y. Benguerba, Inorg. Chem. Commun., 150, 110451 (2023); https://doi.org/10.1016/j.inoche.2023.110451
- M. Pervaiz, R. Quratulain, A. Ejaz, M. Shahin, Z. Saeed, S. Nasir, R. Rashad Mahmood Khan, A. Ashraf, S. Ullah and U. Younas, Inorg. Chem. Commun., 160, 111856 (2024); https://doi.org/10.1016/j.inoche.2023.111856
- R. Malav and S. Ray, RSC Adv., 15, 22889 (2025); https://doi.org/10.1039/D5RA03626G
- N. Nidhi, Siddharam, D.P. Rao, A.K. Gautam, A. Verma and Y. Gautam, Results Chem., 13, 101941 (2025); https://doi.org/10.1016/j.rechem.2024.101941
- K. Brodowska and E. Łodyga-Chruścińska, Chemik, 68, 129 (2014).
- K. Jomova, M. Makova, S.Y. Alomar, S.H. Alwasel, E. Nepovimova, K. Kuca, C.J. Rhodes and M. Valko, Chem. Biol. Interact., 367, 110173 (2022); https://doi.org/10.1016/j.cbi.2022.110173
- D. Karati, S. Mukherjee and S. Roy, Med. Chem., 19, 960 (2023); https://doi.org/10.2174/1573406419666230707105221
- X. Liu and J.R. Hamon, Coord. Chem. Rev., 389, 94 (2019); https://doi.org/10.1016/j.ccr.2019.03.010
- S. Kumar, A. Arora, V.K. Maikhuri, A. Chaudhary, R. Kumar, V.S. Parmar, B.K. Singh and D. Mathur, RSC Advances, 14, 17102 (2024); https://doi.org/10.1039/D4RA00590B
- B. Gowdhami, S. Ambika, B. Karthiyayini, V. Ramya, B. Kadalmani, R.T.V. Vimala and M.A. Akbarsha, Toxicol. In Vitro, 75, 105201 (2021); https://doi.org/10.1016/j.tiv.2021.105201
- S. Yadav, S.P. Sonkar, K.S. Tiwari and M. Shukla, Results Chem., 10, 101743 (2024); https://doi.org/10.1016/j.rechem.2024.101743
- M. Stradiotto and R.J. Lundgren, Eds., Key Concepts in Ligand Design: An Introduction, In: Ligand Design in Metal Chemistry: Reactivity and Catalysis, edn. 1, Chap. 1, pp. 1-14, John Wiley & Sons, Ltd. (2016).
- S. Mondal, S.M. Mandal, T.K. Mondal and C. Sinha, J. Mol. Struct., 1127, 557 (2017); https://doi.org/10.1016/j.molstruc.2016.08.011
- P. Durairaj, T. Maruthavanan, S. Manjunathan, S. Subashini, S.L. Rokhum and G. Baskar, J. Mol. Struct., 1295, 136650 (2024); https://doi.org/10.1016/j.molstruc.2023.136650
- S. Paul, H.P. Gogoi, A. Singh and P. Barman, Inorg. Chem. Commun., 153, 110760 (2023); https://doi.org/10.1016/j.inoche.2023.110760
- F.A. Almalki, A.N. Abdalla, A.M. Shawky, M.A. El Hassab and A.M. Gouda, Molecules, 26, 4002 (2021); https://doi.org/10.3390/molecules26134002
- S. Maddikayala, K. Bengi, V. Malkhed and S.R. Pulimamidi, Appl. Organomet. Chem., 39, e7949 (2025); https://doi.org/10.1002/aoc.7949
- S. Şahin and N. Dege, J. Mol. Struct., 1250, 131744 (2022); https://doi.org/10.1016/j.molstruc.2021.131744
- P. Jeyaraman, S. Michael, R. Natrajan and A.A.R. Adaikalam, Struct. Chem., 34, 1115 (2023); https://doi.org/10.1007/s11224-022-02065-0
- L.H. Abdel-Rahman, A.A. Abdelghani, A.A. AlObaid, D.A. El-ezz, I. Warad, M.R. Shehata and E.M. Abdalla, Sci. Rep., 13, 3199 (2023); https://doi.org/10.1038/s41598-023-29386-2
- W.H. Mahmoud, R.G. Deghadi and G.G. Mohamed, J. Therm. Anal. Calorim., 127, 2149 (2017); https://doi.org/10.1007/s10973-016-5826-7
- T. Alorini, I. Daoud, A.N. Al-Hakimi and F. Alminderej, J. Mol. Struct., 1276, 134785 (2023); https://doi.org/10.1016/j.molstruc.2022.134785
- M. Ibrahim, A. Khan, M. Ikram, S. Rehman, M. Shah, H. Nabi and A. Ahuchaogu, Asian J. Chem. Sci, 2, 1 (2017); https://doi.org/10.9734/AJOCS/2017/32244
- E. Bursal, F. Turkan, K. Buldurun, N. Turan, A. Aras, N. Çolak, M. Murahari and M.C. Yergeri, Biometals, 34, 393 (2021); https://doi.org/10.1007/s10534-021-00287-z
- N.H. Boukoucha, Z. Messasma, D. Aggoun, Y. Ouennoughi, C. Bensouici, M. Fernández-García, D. Lopez, M. Guelfi, F. Marchetti, G. Bresciani and Z. Chorfi, J. Mol. Struct., 1319, 139505 (2025); https://doi.org/10.1016/j.molstruc.2024.139505
- Y. Deswal, S. Asija, A. Dubey, L. Deswal, D. Kumar, D. Kumar Jindal and J. Devi, J. Mol. Struct., 1253, 132266 (2022); https://doi.org/10.1016/j.molstruc.2021.132266
- S. Zehra, M. Shavez Khan, I. Ahmad and F. Arjmand, J. Biomol. Struct. Dyn., 37, 1863 (2019); https://doi.org/10.1080/07391102.2018.1467794
- V.H. Mariswamy, D. Puttaveerappa, S.K. Prasad, C. Shivamallu, R. Veerapur, S.R. Prasad et al., (2020). Chemical Synthesis, Spectral Characterization and Antitumor Activity of Co (II), Zn (II) and Ni (II) Complexes Derived from Thiazole-based Schiff Base Ligand.
- Puttaveerappa, D., Marisamy, V. H., Begum, M., Ramu, R., Shirahatti, P. S., Prasad, N., & Dharmappa, R. N. (2024). Preparation, Characterization, and Biological Activity of Cu (II) and Co (II) Complexes of 5-(((E)-3-Phenylallylidene) Amino-1, 3, 4-Thiadaizole-2-Thiol Schiff Base Ligand.
- P. Deepika, H.M. Vinusha, M. Begum, R. Ramu, P.S. Shirahatti and M.N. Nagendra Prasad, Heliyon, 8, e09648 (2022); https://doi.org/10.1016/j.heliyon.2022.e09648
- E.S. Aazam, A.F. EL Husseiny and H.M. Al-Amri, Arab. J. Chem., 5, 45 (2012); https://doi.org/10.1016/j.arabjc.2010.07.022
- M. Türkmenoğlu, S.T. Yıldırım, A. Altay and B. Türkmenoğlu, ChemistrySelect, 9, e202303519 (2024); https://doi.org/10.1002/slct.202303519
- A. Tahmasbi, A. Jafari and A. Nikoo, Sci. Rep., 13, 10988 (2023); https://doi.org/10.1038/s41598-023-38086-w
- Y.M.A. Jamil, F.M. Al-Azab and N.A. Al-Selwi, Eclét. Quím., 48, 36 (2023); https://doi.org/10.26850/1678-4618eqj.v48.3.2023.p36-53
- M.I. Alam, M.A. Alam, O. Alam, A. Nargotra, S.C. Taneja and S. Koul, Eur. J. Med. Chem., 114, 209 (2016); https://doi.org/10.1016/j.ejmech.2016.03.008
- A.M. Abu-Dief, R.M. El-Khatib, F.S. Aljohani, S.O. Alzahrani, A. Mahran, M.E. Khalifa and N.M. El-Metwaly, J. Mol. Struct., 1242, 130693 (2021); https://doi.org/10.1016/j.molstruc.2021.130693
- J. Devi, S. Kumar, B. Kumar, S. Asija and A. Kumar, Res. Chem. Intermed., 48, 1541 (2022); https://doi.org/10.1007/s11164-021-04644-y
References
C. Boulechfar, H. Ferkous, A. Delimi, A. Djedouani, A. Kahlouche, A. Boublia, A.S. Darwish, T. Lemaoui, R. Verma and Y. Benguerba, Inorg. Chem. Commun., 150, 110451 (2023); https://doi.org/10.1016/j.inoche.2023.110451
M. Pervaiz, R. Quratulain, A. Ejaz, M. Shahin, Z. Saeed, S. Nasir, R. Rashad Mahmood Khan, A. Ashraf, S. Ullah and U. Younas, Inorg. Chem. Commun., 160, 111856 (2024); https://doi.org/10.1016/j.inoche.2023.111856
R. Malav and S. Ray, RSC Adv., 15, 22889 (2025); https://doi.org/10.1039/D5RA03626G
N. Nidhi, Siddharam, D.P. Rao, A.K. Gautam, A. Verma and Y. Gautam, Results Chem., 13, 101941 (2025); https://doi.org/10.1016/j.rechem.2024.101941
K. Brodowska and E. Łodyga-Chruścińska, Chemik, 68, 129 (2014).
K. Jomova, M. Makova, S.Y. Alomar, S.H. Alwasel, E. Nepovimova, K. Kuca, C.J. Rhodes and M. Valko, Chem. Biol. Interact., 367, 110173 (2022); https://doi.org/10.1016/j.cbi.2022.110173
D. Karati, S. Mukherjee and S. Roy, Med. Chem., 19, 960 (2023); https://doi.org/10.2174/1573406419666230707105221
X. Liu and J.R. Hamon, Coord. Chem. Rev., 389, 94 (2019); https://doi.org/10.1016/j.ccr.2019.03.010
S. Kumar, A. Arora, V.K. Maikhuri, A. Chaudhary, R. Kumar, V.S. Parmar, B.K. Singh and D. Mathur, RSC Advances, 14, 17102 (2024); https://doi.org/10.1039/D4RA00590B
B. Gowdhami, S. Ambika, B. Karthiyayini, V. Ramya, B. Kadalmani, R.T.V. Vimala and M.A. Akbarsha, Toxicol. In Vitro, 75, 105201 (2021); https://doi.org/10.1016/j.tiv.2021.105201
S. Yadav, S.P. Sonkar, K.S. Tiwari and M. Shukla, Results Chem., 10, 101743 (2024); https://doi.org/10.1016/j.rechem.2024.101743
M. Stradiotto and R.J. Lundgren, Eds., Key Concepts in Ligand Design: An Introduction, In: Ligand Design in Metal Chemistry: Reactivity and Catalysis, edn. 1, Chap. 1, pp. 1-14, John Wiley & Sons, Ltd. (2016).
S. Mondal, S.M. Mandal, T.K. Mondal and C. Sinha, J. Mol. Struct., 1127, 557 (2017); https://doi.org/10.1016/j.molstruc.2016.08.011
P. Durairaj, T. Maruthavanan, S. Manjunathan, S. Subashini, S.L. Rokhum and G. Baskar, J. Mol. Struct., 1295, 136650 (2024); https://doi.org/10.1016/j.molstruc.2023.136650
S. Paul, H.P. Gogoi, A. Singh and P. Barman, Inorg. Chem. Commun., 153, 110760 (2023); https://doi.org/10.1016/j.inoche.2023.110760
F.A. Almalki, A.N. Abdalla, A.M. Shawky, M.A. El Hassab and A.M. Gouda, Molecules, 26, 4002 (2021); https://doi.org/10.3390/molecules26134002
S. Maddikayala, K. Bengi, V. Malkhed and S.R. Pulimamidi, Appl. Organomet. Chem., 39, e7949 (2025); https://doi.org/10.1002/aoc.7949
S. Şahin and N. Dege, J. Mol. Struct., 1250, 131744 (2022); https://doi.org/10.1016/j.molstruc.2021.131744
P. Jeyaraman, S. Michael, R. Natrajan and A.A.R. Adaikalam, Struct. Chem., 34, 1115 (2023); https://doi.org/10.1007/s11224-022-02065-0
L.H. Abdel-Rahman, A.A. Abdelghani, A.A. AlObaid, D.A. El-ezz, I. Warad, M.R. Shehata and E.M. Abdalla, Sci. Rep., 13, 3199 (2023); https://doi.org/10.1038/s41598-023-29386-2
W.H. Mahmoud, R.G. Deghadi and G.G. Mohamed, J. Therm. Anal. Calorim., 127, 2149 (2017); https://doi.org/10.1007/s10973-016-5826-7
T. Alorini, I. Daoud, A.N. Al-Hakimi and F. Alminderej, J. Mol. Struct., 1276, 134785 (2023); https://doi.org/10.1016/j.molstruc.2022.134785
M. Ibrahim, A. Khan, M. Ikram, S. Rehman, M. Shah, H. Nabi and A. Ahuchaogu, Asian J. Chem. Sci, 2, 1 (2017); https://doi.org/10.9734/AJOCS/2017/32244
E. Bursal, F. Turkan, K. Buldurun, N. Turan, A. Aras, N. Çolak, M. Murahari and M.C. Yergeri, Biometals, 34, 393 (2021); https://doi.org/10.1007/s10534-021-00287-z
N.H. Boukoucha, Z. Messasma, D. Aggoun, Y. Ouennoughi, C. Bensouici, M. Fernández-García, D. Lopez, M. Guelfi, F. Marchetti, G. Bresciani and Z. Chorfi, J. Mol. Struct., 1319, 139505 (2025); https://doi.org/10.1016/j.molstruc.2024.139505
Y. Deswal, S. Asija, A. Dubey, L. Deswal, D. Kumar, D. Kumar Jindal and J. Devi, J. Mol. Struct., 1253, 132266 (2022); https://doi.org/10.1016/j.molstruc.2021.132266
S. Zehra, M. Shavez Khan, I. Ahmad and F. Arjmand, J. Biomol. Struct. Dyn., 37, 1863 (2019); https://doi.org/10.1080/07391102.2018.1467794
V.H. Mariswamy, D. Puttaveerappa, S.K. Prasad, C. Shivamallu, R. Veerapur, S.R. Prasad et al., (2020). Chemical Synthesis, Spectral Characterization and Antitumor Activity of Co (II), Zn (II) and Ni (II) Complexes Derived from Thiazole-based Schiff Base Ligand.
Puttaveerappa, D., Marisamy, V. H., Begum, M., Ramu, R., Shirahatti, P. S., Prasad, N., & Dharmappa, R. N. (2024). Preparation, Characterization, and Biological Activity of Cu (II) and Co (II) Complexes of 5-(((E)-3-Phenylallylidene) Amino-1, 3, 4-Thiadaizole-2-Thiol Schiff Base Ligand.
P. Deepika, H.M. Vinusha, M. Begum, R. Ramu, P.S. Shirahatti and M.N. Nagendra Prasad, Heliyon, 8, e09648 (2022); https://doi.org/10.1016/j.heliyon.2022.e09648
E.S. Aazam, A.F. EL Husseiny and H.M. Al-Amri, Arab. J. Chem., 5, 45 (2012); https://doi.org/10.1016/j.arabjc.2010.07.022
M. Türkmenoğlu, S.T. Yıldırım, A. Altay and B. Türkmenoğlu, ChemistrySelect, 9, e202303519 (2024); https://doi.org/10.1002/slct.202303519
A. Tahmasbi, A. Jafari and A. Nikoo, Sci. Rep., 13, 10988 (2023); https://doi.org/10.1038/s41598-023-38086-w
Y.M.A. Jamil, F.M. Al-Azab and N.A. Al-Selwi, Eclét. Quím., 48, 36 (2023); https://doi.org/10.26850/1678-4618eqj.v48.3.2023.p36-53
M.I. Alam, M.A. Alam, O. Alam, A. Nargotra, S.C. Taneja and S. Koul, Eur. J. Med. Chem., 114, 209 (2016); https://doi.org/10.1016/j.ejmech.2016.03.008
A.M. Abu-Dief, R.M. El-Khatib, F.S. Aljohani, S.O. Alzahrani, A. Mahran, M.E. Khalifa and N.M. El-Metwaly, J. Mol. Struct., 1242, 130693 (2021); https://doi.org/10.1016/j.molstruc.2021.130693
J. Devi, S. Kumar, B. Kumar, S. Asija and A. Kumar, Res. Chem. Intermed., 48, 1541 (2022); https://doi.org/10.1007/s11164-021-04644-y