Copyright (c) 2025 SARATHKUMAR ANBUSELVAN, NITHISHKUMAR SRINIVASAN, SIVAKUMAR GANESAN

This work is licensed under a Creative Commons Attribution 4.0 International License.
Solvothermal Synthesis of Flower-like CMTS Nanostructures for High-Efficiency Photocatalytic Degradation of Organic Dyes Under Natural Sunlight
Corresponding Author(s) : Sivakumar Ganesan
Asian Journal of Chemistry,
Vol. 37 No. 12 (2025): Vol 37 Issue 12, 2025
Abstract
In this study, Cu2MnSnS4 (CMTS) nanoparticles with a flower-like nanostructure were successfully synthesized via a solvothermal method by varying the reaction durations to investigate their structural, morphological and photocatalytic properties. X-ray diffraction (XRD) and Raman spectroscopy confirmed the formation of a single-phase kesterite structure at prolonged reaction time (24 h), while shorter durations resulted in mixed phases. SEM analysis revealed the evolution of well-defined flower-like architectures composed of ultrathin nanosheets in the 24 h sample, which exhibited improved crystallinity and phase purity. XPS analysis confirmed the presence of Cu+, Mn2+, Sn4+ and S2– oxidation states. The optical characterization using UV-Vis diffuse reflectance spectroscopy revealed strong visible light absorption with a narrowed bandgap of 1.66 eV for the 24 h sample. The photocatalytic activity of CMTS nanoparticles was evaluated under natural sunlight for the degradation of methylene blue (MB) and crystal violet (CV) dyes. The Cu2MnSnS4-24 (CMTS24) catalyst demonstrated superior degradation efficiencies of 76% for MB and 73% for CV within 50 min, attributed to its high surface area, improved charge carrier separation and enhanced light-harvesting capability. These findings highlight the crucial role of reaction time in determining the structural and functional properties of CMTS nanomaterials, establishing CMTS24 as a promising candidate for solar-driven photocatalytic wastewater treatment applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Mehta, M. Sharma, K. Pathania, P.K. Jena and I. Bhushan, Environ. Sci. Pollut. Res. Int., 28, 49434 (2021); https://doi.org/10.1007/s11356-021-15470-5.
- G.A. El Naeem, A.I. Abd-Elhamid, O.O. Farahat, A.A. El-Bardan, H.M. Soliman and A.A. Nayl, J. Mater. Res. Technol., 19, 3241 (2022); https://doi.org/10.1016/j.jmrt.2022.06.045
- O.A. Yildirim, M. Bahadir and E. Pehlivan, Fresenius Environ. Bull., 31, 9329 (2022).
- C. Di Iaconi, G. Del Moro, M. De Sanctis and S. Rossetti, Water Res., 44, 3635 (2010); https://doi.org/10.1016/j.watres.2010.04.017
- K.H. Hama Aziz, F.S. Mustafa, K.M. Omer, S. Hama, R.F. Hamarawf and K.O. Rahman, RSC Adv., 13, 17595 (2023); https://doi.org/10.1039/D3RA00723E
- G. Thennarasu, S. Rajendran, A. Kalairaj, H.S. Rathore, R.C. Panda and T. Senthilvelan, Clean Technol. Environ. Policy, 27, 495 (2025); https://doi.org/10.1007/s10098-024-02960-6
- R. Ramirez, C. Arellano, J. Varia and S. Martinez, Curr. Org. Chem., 19, 540 (2015); https://doi.org/10.2174/138527281906150417094736
- S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun and J. Sun, RSC Adv., 5, 14610 (2015); https://doi.org/10.1039/C4RA13734E
- P. Kush and S. Deka, ChemNanoMat, 5, 373 (2019); https://doi.org/10.1002/cnma.201800321
- J.H. Malik, M.B. Zaman, R. Poolla, K.A. Malik, I. Assadullah, A.A. Bhat and R. Tomar, Mater. Sci. Semicond. Process., 121, 105438 (2021); https://doi.org/10.1016/j.mssp.2020.105438
- A. Bouali, O. Kamoun, M. Hajji, I.N. Popescu, R. Vidu and N. Turki Kamoun, Technologies, 13, 301 (2025); https://doi.org/10.3390/technologies13070301
- A. Sarathkumar, S. Nithishkumar, G. Sivakumar and K. Mohanraj, Mater. Sci. Semicond. Process., 196, 109660 (2025); https://doi.org/10.1016/j.mssp.2025.109660
- J.B. Raval, S.H. Chaki, S.R. Patel, Y.H. Vaidya, A.J. Khimani, P. Thakor, A.B. Thakkar and M.P. Deshpande, J. Nanopart. Res., 27, 36 (2025); https://doi.org/10.1007/s11051-025-06237-x
- S. Walake, S. Rondiya, S. Jadkar and Y.A. Jadhav, J. Mater. Sci. Mater. Electron., 36, 548 (2025); https://doi.org/10.1007/s10854-025-14566-9
- M. Priya, S. Udhayan, A. Sarathkumar, E. Radhakrishnan, R. Nalini Suja, P. Vasantharani and G. Sivakumar, Inorg. Chem. Commun., 158, 111539 (2023); https://doi.org/10.1016/j.inoche.2023.111539
- J.H. Malik, I. Islam, R. Tomar and S.A. Khandy, Ceram. Int., 50, 42886 (2024); https://doi.org/10.1016/j.ceramint.2024.08.134
- V.M. Dzhagan, A.P. Litvinchuk, M. Kruszynska, J. Kolny-Olesiak, M.Y. Valakh and D.R. Zahn, J. Phys. Chem. C, 118, 27554 (2014); https://doi.org/10.1021/jp509035f
- E. Waluś, M. Manecki, G. Cios and T. Tokarski, Materials, 14, 3457 (2021); https://doi.org/10.3390/ma14133457
- H. Guan, H. Hou, M. Li and J. Cui, Mater. Lett., 188, 319 (2017); https://doi.org/10.1016/j.matlet.2016.09.018
- J. Yu, H. Deng, Q. Zhang, J. Tao, L. Sun, P. Yang and J. Chu, Mater. Lett., 233, 111 (2018); https://doi.org/10.1016/j.matlet.2018.08.147
- V. Arun, A. Priyadharsan, S. Sivakumar, R. Ranjith, M. Handayani, Muqoyyanah, G.G. Redhyka, M.A. Wadaan, R. Mythili and Y.D. Rahmayanti, Luminescence, 39, e70053 (2024); https://doi.org/10.1002/bio.70053
- M. Selvam, S. Anbuselvan, N.K. Srinivasan, M. Kannusamy, H.O. Soonmin and S. Ganesan, Curr. Appl. Sci. Technol., 16, e0260708 (2024); https://doi.org/10.55003/cast.2023.260708
- N. Karikalan, R. Karthik, S.M. Chen, C. Karuppiah and A. Elangovan, Sci. Rep., 7, 2494 (2017); https://doi.org/10.1038/s41598-017-02479-5
- K. Shim, H.W. Kim, S. Park, K.D. Seo, C.Y. Kim, J.B. Lee, J.S. Bae and H.J.A. Kim, Mater. Adv., 5, 3014 (2024); https://doi.org/10.1039/D4MA00066H
- F. Butrichi, V. Trifiletti, G. Tseberlidis, B.E. Colombo, F. Taglietti, M. Rancan, L. Armelao and S. Binetti, Sol. Energy Mater. Sol. Cells, 272, 112924 (2024); https://doi.org/10.1016/j.solmat.2024.112924
- S. Sultana, A. Hore, K. Shams, T. Ur Rashid, M.M. Rahman and M. Shahruzzaman, Water Pract. Technol., 20, 190 (2025); https://doi.org/10.2166/wpt.2025.006
- K. Shi, G. Qian, W. Yi, W. Tang, F. Liu, Y. Li, C. Yang, Y. Xiang and H. Yao, J. Environ. Chem. Eng., 12, 111737 (2024); https://doi.org/10.1016/j.jece.2023.111737
- P. Sivakumar, C.J. Raj, A.D. Savariraj, R. Manikandan and H. Jung, Surf. Interfaces, 51, 104641 (2024); https://doi.org/10.1016/j.surfin.2024.104641
- H. Tanaya Das, S. Dutta, K. Gaurav, A. Kanti Giri, A. Mondal, R. Kumar Jena and N. Das, Chem. Asian J., 19, e202300813 (2024); https://doi.org/10.1002/asia.202300813
- H. Guan, H. Shen and A. Raza, Catal. Lett., 147, 1844 (2017); https://doi.org/10.1007/s10562-017-2094-5
- M.F. Sanakousar, V. C.C, V.M. Jiménez-Pérez, B.K. Jayanna, Mounesh, A.H. Shridhar and K. Prakash, J. Hazard. Materials Adv., 2, 100004 (2021); https://doi.org/10.1016/j.hazadv.2021.100004
- O.P. Kumar, M.N. Ashiq, M. Ahmad, S. Anjum and A.U. Rehman, J. Mater. Sci. Mater. Electron., 31, 21082 (2020); https://doi.org/10.1007/s10854-020-04620-z
References
M. Mehta, M. Sharma, K. Pathania, P.K. Jena and I. Bhushan, Environ. Sci. Pollut. Res. Int., 28, 49434 (2021); https://doi.org/10.1007/s11356-021-15470-5.
G.A. El Naeem, A.I. Abd-Elhamid, O.O. Farahat, A.A. El-Bardan, H.M. Soliman and A.A. Nayl, J. Mater. Res. Technol., 19, 3241 (2022); https://doi.org/10.1016/j.jmrt.2022.06.045
O.A. Yildirim, M. Bahadir and E. Pehlivan, Fresenius Environ. Bull., 31, 9329 (2022).
C. Di Iaconi, G. Del Moro, M. De Sanctis and S. Rossetti, Water Res., 44, 3635 (2010); https://doi.org/10.1016/j.watres.2010.04.017
K.H. Hama Aziz, F.S. Mustafa, K.M. Omer, S. Hama, R.F. Hamarawf and K.O. Rahman, RSC Adv., 13, 17595 (2023); https://doi.org/10.1039/D3RA00723E
G. Thennarasu, S. Rajendran, A. Kalairaj, H.S. Rathore, R.C. Panda and T. Senthilvelan, Clean Technol. Environ. Policy, 27, 495 (2025); https://doi.org/10.1007/s10098-024-02960-6
R. Ramirez, C. Arellano, J. Varia and S. Martinez, Curr. Org. Chem., 19, 540 (2015); https://doi.org/10.2174/138527281906150417094736
S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun and J. Sun, RSC Adv., 5, 14610 (2015); https://doi.org/10.1039/C4RA13734E
P. Kush and S. Deka, ChemNanoMat, 5, 373 (2019); https://doi.org/10.1002/cnma.201800321
J.H. Malik, M.B. Zaman, R. Poolla, K.A. Malik, I. Assadullah, A.A. Bhat and R. Tomar, Mater. Sci. Semicond. Process., 121, 105438 (2021); https://doi.org/10.1016/j.mssp.2020.105438
A. Bouali, O. Kamoun, M. Hajji, I.N. Popescu, R. Vidu and N. Turki Kamoun, Technologies, 13, 301 (2025); https://doi.org/10.3390/technologies13070301
A. Sarathkumar, S. Nithishkumar, G. Sivakumar and K. Mohanraj, Mater. Sci. Semicond. Process., 196, 109660 (2025); https://doi.org/10.1016/j.mssp.2025.109660
J.B. Raval, S.H. Chaki, S.R. Patel, Y.H. Vaidya, A.J. Khimani, P. Thakor, A.B. Thakkar and M.P. Deshpande, J. Nanopart. Res., 27, 36 (2025); https://doi.org/10.1007/s11051-025-06237-x
S. Walake, S. Rondiya, S. Jadkar and Y.A. Jadhav, J. Mater. Sci. Mater. Electron., 36, 548 (2025); https://doi.org/10.1007/s10854-025-14566-9
M. Priya, S. Udhayan, A. Sarathkumar, E. Radhakrishnan, R. Nalini Suja, P. Vasantharani and G. Sivakumar, Inorg. Chem. Commun., 158, 111539 (2023); https://doi.org/10.1016/j.inoche.2023.111539
J.H. Malik, I. Islam, R. Tomar and S.A. Khandy, Ceram. Int., 50, 42886 (2024); https://doi.org/10.1016/j.ceramint.2024.08.134
V.M. Dzhagan, A.P. Litvinchuk, M. Kruszynska, J. Kolny-Olesiak, M.Y. Valakh and D.R. Zahn, J. Phys. Chem. C, 118, 27554 (2014); https://doi.org/10.1021/jp509035f
E. Waluś, M. Manecki, G. Cios and T. Tokarski, Materials, 14, 3457 (2021); https://doi.org/10.3390/ma14133457
H. Guan, H. Hou, M. Li and J. Cui, Mater. Lett., 188, 319 (2017); https://doi.org/10.1016/j.matlet.2016.09.018
J. Yu, H. Deng, Q. Zhang, J. Tao, L. Sun, P. Yang and J. Chu, Mater. Lett., 233, 111 (2018); https://doi.org/10.1016/j.matlet.2018.08.147
V. Arun, A. Priyadharsan, S. Sivakumar, R. Ranjith, M. Handayani, Muqoyyanah, G.G. Redhyka, M.A. Wadaan, R. Mythili and Y.D. Rahmayanti, Luminescence, 39, e70053 (2024); https://doi.org/10.1002/bio.70053
M. Selvam, S. Anbuselvan, N.K. Srinivasan, M. Kannusamy, H.O. Soonmin and S. Ganesan, Curr. Appl. Sci. Technol., 16, e0260708 (2024); https://doi.org/10.55003/cast.2023.260708
N. Karikalan, R. Karthik, S.M. Chen, C. Karuppiah and A. Elangovan, Sci. Rep., 7, 2494 (2017); https://doi.org/10.1038/s41598-017-02479-5
K. Shim, H.W. Kim, S. Park, K.D. Seo, C.Y. Kim, J.B. Lee, J.S. Bae and H.J.A. Kim, Mater. Adv., 5, 3014 (2024); https://doi.org/10.1039/D4MA00066H
F. Butrichi, V. Trifiletti, G. Tseberlidis, B.E. Colombo, F. Taglietti, M. Rancan, L. Armelao and S. Binetti, Sol. Energy Mater. Sol. Cells, 272, 112924 (2024); https://doi.org/10.1016/j.solmat.2024.112924
S. Sultana, A. Hore, K. Shams, T. Ur Rashid, M.M. Rahman and M. Shahruzzaman, Water Pract. Technol., 20, 190 (2025); https://doi.org/10.2166/wpt.2025.006
K. Shi, G. Qian, W. Yi, W. Tang, F. Liu, Y. Li, C. Yang, Y. Xiang and H. Yao, J. Environ. Chem. Eng., 12, 111737 (2024); https://doi.org/10.1016/j.jece.2023.111737
P. Sivakumar, C.J. Raj, A.D. Savariraj, R. Manikandan and H. Jung, Surf. Interfaces, 51, 104641 (2024); https://doi.org/10.1016/j.surfin.2024.104641
H. Tanaya Das, S. Dutta, K. Gaurav, A. Kanti Giri, A. Mondal, R. Kumar Jena and N. Das, Chem. Asian J., 19, e202300813 (2024); https://doi.org/10.1002/asia.202300813
H. Guan, H. Shen and A. Raza, Catal. Lett., 147, 1844 (2017); https://doi.org/10.1007/s10562-017-2094-5
M.F. Sanakousar, V. C.C, V.M. Jiménez-Pérez, B.K. Jayanna, Mounesh, A.H. Shridhar and K. Prakash, J. Hazard. Materials Adv., 2, 100004 (2021); https://doi.org/10.1016/j.hazadv.2021.100004
O.P. Kumar, M.N. Ashiq, M. Ahmad, S. Anjum and A.U. Rehman, J. Mater. Sci. Mater. Electron., 31, 21082 (2020); https://doi.org/10.1007/s10854-020-04620-z