Copyright (c) 2025 SUCHITHRA S

This work is licensed under a Creative Commons Attribution 4.0 International License.
Eco-friendly Synthesis of Silver Nanoparticles from Persea americana: Evaluation of Nonlinear Optical Behaviour and Antibacterial Efficacy
Corresponding Author(s) : Vijayakumar Sadasivan Nair
Asian Journal of Chemistry,
Vol. 37 No. 11 (2025): Vol 37 Issue 11, 2025
Abstract
Plant-mediated synthesis of metal nanoparticles is widely employed for intended applications and is regarded as a dependable green method to reduce the use of hazardous chemicals. This study details a straightforward, economical and environmentally friendly method for synthesizing highly stable silver nanoparticles (AgNPs) using Persia americana (Avocado) leaf extract as both a stabilizing and reducing agent. Distinct peaks corresponding to the cubic silver crystallographic planes were confirmed by the X-ray diffraction (XRD) patterns. The surface plasmon resonance band of synthesized AgNPs was observed at around 452 nm using UV-Vis spectral analysis. FT-IR spectroscopy identified the plant extract’s biomolecules responsible for the effective stabilization and reduction of AgNPs. Comprehensive nonlinear optical behaviour studies were conducted using a single-beam Z-scan setup with Nd: YAG laser source, revealing significant optical limiting properties with a threshold value of 5.97 J/cm2. Furthermore, the prepared AgNPs demonstrated good antimicrobial effects against human pathogens, specifically P. mirabilis. These findings suggest that the as-synthesized nanosilver particles are promising candidates for optoelectronic devices and various antimicrobial applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Nidya, M. Umadevi, P. Sankar, R. Philip and B.J.M. Rajkumar, Opt. Mater., 42, 152 (2015); https://doi.org/10.1016/j.optmat.2015.01.002
- S. Pugazhendhi, P. Sathya, P.K. Palanisamy and R. Gopalakrishnan, J. Photochem. Photobiol. B, 155, 5 (2016); https://doi.org/10.1016/j.jphotobiol.2016.03.043
- K. Shameli, M. Ahmad, P. Shabanzadeh, A. Zamanian, P. Sangpour, Y. Abdollahi and Z. Mohsen, Int. J. Nanomedicine, 2012, 5603 (2012); https://doi.org/10.2147/IJN.S36786
- G. Karunakaran, M. Jagathambal, A. Gusev, E. Kolesnikov, A.R. Mandal and D. Kuznetsov, MRS Commun., 6, 41 (2016); https://doi.org/10.1557/mrc.2016.2
- D.-M. Radulescu, V.-A. Surdu, A. Ficai, D. Ficai, A.-M. Grumezescu, and E. Andronescu, Int. J. Mol. Sci., 24, 15397 (2023); https://doi.org/10.3390/ijms242015397
- N. Ahmad, S. Sharma, M.K. Alam, V.N. Singh, S.F. Shamsi, B.R. Mehta and A. Fatma, Colloids Surf. B Biointerfaces, 81, 81 (2010); https://doi.org/10.1016/j.colsurfb.2010.06.029
- A. Nabikhan, K. Kandasamy, A. Raj and N.M. Alikunhi, Colloids Surf. B Biointerfaces, 79, 488 (2010); https://doi.org/10.1016/j.colsurfb.2010.05.018
- I.J. Lithi, K.I.A. Nakib, A.M.S. Chowdhury and M.S. Hossain, Nanoscale Adv., 7, 2446 (2025); https://doi.org/10.1039/D5NA00037H
- N. Revathi, M. Sankarganesh, J. Dhaveethu Raja, J. Rajakanna and O. Senthilkumar, Inorg. Chem. Commun., 154, 110935 (2023); https://doi.org/10.1016/j.inoche.2023.110935
- S. Shahzadi, S. Fatima, Q. ul Ain, Z. Shafiq and M.R.S.A. Janjua, RSC Adv., 15, 3858 (2025); https://doi.org/10.1039/D4RA07519F
- H. Chopra, S. Bibi, I. Singh, M.M. Hasan, M.S. Khan, Q. Yousafi, A.A. Baig, M.M. Rahman, F. Islam, T.B. Emran and S. Cavalu, Front. Bioeng. Biotechnol., 10, 874742 (2022); https://doi.org/10.3389/fbioe.2022.874742
- F. Khan, M. Shariq, M. Asif, M. A. Siddiqui, P. Malan and F. Ahmad, Nanomaterials, 12, 673 (2022); https://doi.org/10.3390/nano12040673
- F. Ahmadi and M. Lackner, Chem. Eng., 8, 64 (2024); https://doi.org/10.3390/chemengineering8040064
- S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/C1GC15386B
- S. Pugazhendhi, E. Kirubha, P.K. Palanisamy and R. Gopalakrishnan, Appl. Surf. Sci., 357, 1801 (2015); https://doi.org/10.1016/j.apsusc.2015.09.237
- F.Z. Henari and H. Manaa, Opt. Photonics J., 8, 235 (2018); https://doi.org/10.4236/opj.2018.87020
- N.U.H.H. Zalkepali, T.J. Sang, T.J. Xuan, A.Z.M. Zamri, N.N.H.E.N. Mahmud, K.L. Mun and N.A. Awang, Opt. Fiber Technol., 87, 103915 (2024); https://doi.org/10.1016/j.yofte.2024.103915
- Y. Wang, X. Li, A. Wang, J. Zhang, J. Wo and Q. Wang, Am. J. Opt. Photon., 9, 18 (2021); https://doi.org/10.11648/j.ajop.20210901.13
- H. Qayyum, S. Mamdouh, A. Mahmoud and T. Mohamed, Laser Innov. Res. Appl., 2, 1 (2025); https://doi.org/10.21608/lira.2025.383757.1007
- F. Anjum, A. Saddiq, M. M. Nazir, R. Naseer, M. Riaz and A. Ashraf, Int. J. Biol. Macromol., 329, 147771 (2025); https://doi.org/10.1016/j.ijbiomac.2025.147771
- Y. Ngungeni, J.A. Aboyewa, K.L. Moabelo, N.R.S. Sibuyi, S. Meyer, M.O. Onani, M. Meyer and A.M. Madiehe, ACS Omega, 8, 26088 (2023); https://doi.org/10.1021/acsomega.3c02260
- O. Al-Hammood, S.H. AlRajhi, A.G. Oraibi and M. Kadhom, Results Chem., 12, 101895 (2024); https://doi.org/10.1016/j.rechem.2024.101895
- B. Kumar, K. Smita, A. Debut and L. Cumbal, Environ. Nanotechnol. Monit. Manag., 10, 231 (2018); https://doi.org/10.1016/j.enmm.2018.07.009
- M.M. Khalil, E.H. Ismail, K.Z. El-Baghdady and D. Mohamed, Arab. J. Chem., 7, 1131 (2014); https://doi.org/10.1016/j.arabjc.2013.04.007
- P. Papolu and A. Bhogi, Mater. Today Proc., 92, 924 (2023); https://doi.org/10.1016/j.matpr.2023.04.544
- P. Mulvaney, Langmuir, 12, 788 (1996); https://doi.org/10.1021/la9502711
- M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan and E.W. Van Stryland, IEEE J. Quantum Electron., 26, 760 (1990); https://doi.org/10.1109/3.53394
- F.Z. Henari and H. Manaa, Opt. Photon. J., 8, 235 (2018); https://doi.org/10.4236/opj.2018.87020
- S. Chitrambalam, S. Abraham, V.K. Rastogi and I.H. Joe, Chem. Phys. Lett., 754, 137648 (2020); https://doi.org/10.1016/j.cplett.2020.137648
- A.A. Noble and I.H. Joe, Surf. Interfaces, 44, 103603 (2024); https://doi.org/10.1016/j.surfin.2023.103603
- K. Ozga, M. Oyama, M. Szota, M. Nabiałek, I.V. Kityk, A. Ślęzak, A.A. Umar and K. Nouneh, J. Alloys Compd., 509, S424 (2011); https://doi.org/10.1016/j.jallcom.2010.12.107
- P. Chantharasupawong, R. Philip, N.T. Narayanan, P.M. Sudeep, A. Mathkar, P.M. Ajayan and J. Thomas, J. Phys. Chem. C, 116, 25955 (2012); https://doi.org/10.1021/jp3096693
- D. Dini, M.J.F. Calvete and M. Hanack, Chem. Rev., 116, 13043 (2016); https://doi.org/10.1021/acs.chemrev.6b00033
References
M. Nidya, M. Umadevi, P. Sankar, R. Philip and B.J.M. Rajkumar, Opt. Mater., 42, 152 (2015); https://doi.org/10.1016/j.optmat.2015.01.002
S. Pugazhendhi, P. Sathya, P.K. Palanisamy and R. Gopalakrishnan, J. Photochem. Photobiol. B, 155, 5 (2016); https://doi.org/10.1016/j.jphotobiol.2016.03.043
K. Shameli, M. Ahmad, P. Shabanzadeh, A. Zamanian, P. Sangpour, Y. Abdollahi and Z. Mohsen, Int. J. Nanomedicine, 2012, 5603 (2012); https://doi.org/10.2147/IJN.S36786
G. Karunakaran, M. Jagathambal, A. Gusev, E. Kolesnikov, A.R. Mandal and D. Kuznetsov, MRS Commun., 6, 41 (2016); https://doi.org/10.1557/mrc.2016.2
D.-M. Radulescu, V.-A. Surdu, A. Ficai, D. Ficai, A.-M. Grumezescu, and E. Andronescu, Int. J. Mol. Sci., 24, 15397 (2023); https://doi.org/10.3390/ijms242015397
N. Ahmad, S. Sharma, M.K. Alam, V.N. Singh, S.F. Shamsi, B.R. Mehta and A. Fatma, Colloids Surf. B Biointerfaces, 81, 81 (2010); https://doi.org/10.1016/j.colsurfb.2010.06.029
A. Nabikhan, K. Kandasamy, A. Raj and N.M. Alikunhi, Colloids Surf. B Biointerfaces, 79, 488 (2010); https://doi.org/10.1016/j.colsurfb.2010.05.018
I.J. Lithi, K.I.A. Nakib, A.M.S. Chowdhury and M.S. Hossain, Nanoscale Adv., 7, 2446 (2025); https://doi.org/10.1039/D5NA00037H
N. Revathi, M. Sankarganesh, J. Dhaveethu Raja, J. Rajakanna and O. Senthilkumar, Inorg. Chem. Commun., 154, 110935 (2023); https://doi.org/10.1016/j.inoche.2023.110935
S. Shahzadi, S. Fatima, Q. ul Ain, Z. Shafiq and M.R.S.A. Janjua, RSC Adv., 15, 3858 (2025); https://doi.org/10.1039/D4RA07519F
H. Chopra, S. Bibi, I. Singh, M.M. Hasan, M.S. Khan, Q. Yousafi, A.A. Baig, M.M. Rahman, F. Islam, T.B. Emran and S. Cavalu, Front. Bioeng. Biotechnol., 10, 874742 (2022); https://doi.org/10.3389/fbioe.2022.874742
F. Khan, M. Shariq, M. Asif, M. A. Siddiqui, P. Malan and F. Ahmad, Nanomaterials, 12, 673 (2022); https://doi.org/10.3390/nano12040673
F. Ahmadi and M. Lackner, Chem. Eng., 8, 64 (2024); https://doi.org/10.3390/chemengineering8040064
S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/C1GC15386B
S. Pugazhendhi, E. Kirubha, P.K. Palanisamy and R. Gopalakrishnan, Appl. Surf. Sci., 357, 1801 (2015); https://doi.org/10.1016/j.apsusc.2015.09.237
F.Z. Henari and H. Manaa, Opt. Photonics J., 8, 235 (2018); https://doi.org/10.4236/opj.2018.87020
N.U.H.H. Zalkepali, T.J. Sang, T.J. Xuan, A.Z.M. Zamri, N.N.H.E.N. Mahmud, K.L. Mun and N.A. Awang, Opt. Fiber Technol., 87, 103915 (2024); https://doi.org/10.1016/j.yofte.2024.103915
Y. Wang, X. Li, A. Wang, J. Zhang, J. Wo and Q. Wang, Am. J. Opt. Photon., 9, 18 (2021); https://doi.org/10.11648/j.ajop.20210901.13
H. Qayyum, S. Mamdouh, A. Mahmoud and T. Mohamed, Laser Innov. Res. Appl., 2, 1 (2025); https://doi.org/10.21608/lira.2025.383757.1007
F. Anjum, A. Saddiq, M. M. Nazir, R. Naseer, M. Riaz and A. Ashraf, Int. J. Biol. Macromol., 329, 147771 (2025); https://doi.org/10.1016/j.ijbiomac.2025.147771
Y. Ngungeni, J.A. Aboyewa, K.L. Moabelo, N.R.S. Sibuyi, S. Meyer, M.O. Onani, M. Meyer and A.M. Madiehe, ACS Omega, 8, 26088 (2023); https://doi.org/10.1021/acsomega.3c02260
O. Al-Hammood, S.H. AlRajhi, A.G. Oraibi and M. Kadhom, Results Chem., 12, 101895 (2024); https://doi.org/10.1016/j.rechem.2024.101895
B. Kumar, K. Smita, A. Debut and L. Cumbal, Environ. Nanotechnol. Monit. Manag., 10, 231 (2018); https://doi.org/10.1016/j.enmm.2018.07.009
M.M. Khalil, E.H. Ismail, K.Z. El-Baghdady and D. Mohamed, Arab. J. Chem., 7, 1131 (2014); https://doi.org/10.1016/j.arabjc.2013.04.007
P. Papolu and A. Bhogi, Mater. Today Proc., 92, 924 (2023); https://doi.org/10.1016/j.matpr.2023.04.544
P. Mulvaney, Langmuir, 12, 788 (1996); https://doi.org/10.1021/la9502711
M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan and E.W. Van Stryland, IEEE J. Quantum Electron., 26, 760 (1990); https://doi.org/10.1109/3.53394
F.Z. Henari and H. Manaa, Opt. Photon. J., 8, 235 (2018); https://doi.org/10.4236/opj.2018.87020
S. Chitrambalam, S. Abraham, V.K. Rastogi and I.H. Joe, Chem. Phys. Lett., 754, 137648 (2020); https://doi.org/10.1016/j.cplett.2020.137648
A.A. Noble and I.H. Joe, Surf. Interfaces, 44, 103603 (2024); https://doi.org/10.1016/j.surfin.2023.103603
K. Ozga, M. Oyama, M. Szota, M. Nabiałek, I.V. Kityk, A. Ślęzak, A.A. Umar and K. Nouneh, J. Alloys Compd., 509, S424 (2011); https://doi.org/10.1016/j.jallcom.2010.12.107
P. Chantharasupawong, R. Philip, N.T. Narayanan, P.M. Sudeep, A. Mathkar, P.M. Ajayan and J. Thomas, J. Phys. Chem. C, 116, 25955 (2012); https://doi.org/10.1021/jp3096693
D. Dini, M.J.F. Calvete and M. Hanack, Chem. Rev., 116, 13043 (2016); https://doi.org/10.1021/acs.chemrev.6b00033