Copyright (c) 2025 Vikas Magar, Sagar V Rathod, Tukaram Saraf, M K Babrekar, K.M. JADHAV

This work is licensed under a Creative Commons Attribution 4.0 International License.
Enhanced Structural, Optical and Electrical Properties of Gd3+-Doped NiFe2O4 Thin Films Synthesized by Spray Pyrolysis
Corresponding Author(s) : Vikas U. Magar
Asian Journal of Chemistry,
Vol. 37 No. 11 (2025): Vol 37 Issue 11, 2025
Abstract
In this work, the successful synthesis and deposition of Gd3+-doped nickel ferrite (NiFe2-xGdxO4, x = 0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) thin films using the spray pyrolysis technique was achieved. The films were deposited onto ultrasonically cleaned glass substrates and subsequently annealed at 500 ºC for 4 h to enhance crystallinity and phase formation. This approach offers a cost-effective and scalable route for fabricating doped ferrite thin films with tunable properties for potential electronic and magnetic device applications. The X-ray diffraction pattern reflects the presence of diffraction planes (220), (311), (222), (400), (422), (511) and (440), which belonging to the cubic structure. XRD analysis proved that the thin films possess a cubic spinel structure with single-phase formation. The crystallite size calculated from the FWHM of the (311) plane was found to be in the range of 16 to 10 nm. The lattice constant increased from 8.334 Å to 8.388 Å on Gd3+ doping. AFM analysis of typical samples revealed a granular nature and surface roughness and skewness factor. The cubic spinel structure was also confirmed by Raman spectroscopy, which revealed the presence of five active modes. The I-V characteristic study revealed the ohmic nature, showing the resistivity of the order of 106-107 Ω-m. The optical band gap determined from the Tauc plot was in the range of 1.46 eV to 1.80 eV. The band gap increases with increase with Gd3+ doping.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.F. Shaikh, M. Ubaidullah, R.S. Mane and A.M. Al-Enizi, in eds.: R.S. Mane and V.V. Jadhav, Types, Synthesis Methods and Applications of Ferrites, In: Spinel Ferrite Nanostructures for Energy Storage Devices, Elsevier, Chap. 4, pp. 51-82 (2020).
- R. Bharamagoudar, A. Patil, S. Mathad and L. Kankanawadi, Int. J. Self-Propag. High-Temp. Synth., 33, 165 (2024); https://doi.org/10.3103/S1061386224700110
- T. Zeeshan, S. Waseem, Z. Ejaz, Z. Kayani and T.E. Kuntsevich, Inorg. Chem. Commun., 162, 111687 (2024); https://doi.org/10.1016/j.inoche.2023.111687
- S.V. Rathod, V.U. Magar, S.V. Rajmane, D.R. Sapate and K.M. Jadhav, J. Mater. Sci. Mater. Electron., 36, 191 (2025); https://doi.org/10.1007/s10854-025-14227-x
- V.U. Magar, S.V. Rathod, P.S. Patil, S. More and M. Babrekar, J. Mater. Sci. Mater. Electron., 35, 967 (2024); https://doi.org/10.1007/s10854-024-12705-2
- I. Hossain, M.T. Islam, N.M. Sahar, M. Samsuzzaman, A. Alzamil and M.S. Soliman, J. Sci.: Adv. Mater. Dev., 9, 100750 (2024); https://doi.org/10.1016/j.jsamd.2024.100750
- H.L. Andersen, C. Granados-Miralles, K.M.Ø. Jensen, M. Saura-Múzquiz and M. Christensen, ACS Nano, 18, 9852 (2024); https://doi.org/10.1021/acsnano.3c08772
- M.A. Rafiq, A. Javed, M.N. Rasul, M.A. Khan and A. Hussain, Ceram. Int., 46, 4976 (2020); https://doi.org/10.1016/j.ceramint.2019.10.237
- W. Mansouri, F. Hcini, S. Hcini, A.H. Alshehri, F. Bahri, S. Bouzidi, J. Dhahri, T. Guerfel and M.L. Bouazizi, J. Mater. Sci. Mater. Electron., 33, 23468 (2022); https://doi.org/10.1007/s10854-022-09107-7
- U. Ahmad, M. Afzia, F. Shah, B. Ismail, A. Rahim and R.A. Khan, Mater. Sci. Semicond. Process., 148, 106830 (2022); https://doi.org/10.1016/j.mssp.2022.106830
- S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya and V. Singh, J. Mol. Struct., 1076, 55 (2014); https://doi.org/10.1016/j.molstruc.2014.07.048
- R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař and M. Holek, J. Phys. Chem. Solids, 110, 87 (2017); https://doi.org/10.1016/j.jpcs.2017.05.029
- S. Verma, A. Maurya, H. Verma, R. Singh and B. Bhoi, Chem. Phys. Impact, 9, 100674 (2024); https://doi.org/10.1016/j.chphi.2024.100674
- P.S. Patil, Y.P. Ubale, S.S. Gawali, M.R. Pai and K. Jadhav, Ceram. Int., 50, 54155 (2024); https://doi.org/10.1016/j.ceramint.2024.10.272
- S.S. Roy, Ph.D. Thesis, Synthesis and Characterization of Tin Oxide and Copper Doped Tin Oxide Thin Films by Spray Pyrolysis, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh (2009).
- R. Rani, S. Sharma, M. Quaglio, S. Hernandez, S. Bianco, A. Chiodoni, and C.F. Pirri, in eds.: R. Rai, Fabrication of KNN Thin-Films via a Spin Coating Technique, In: Smart Materials for Smart Living, Nova Science Publishers INC., India, Chap. 9, p. 277 (2017).
- M.N. Ghazzal, E. Aubry, N. Chaoui and D. Robert, Beilstein J. Nanotechnol., 6, 2039 (2015); https://doi.org/10.3762/bjnano.6.207
- E.G. Agbim, I.L. Ikhioya and A J. Ekpunobi, IOSR J. Appl. Phys., 11, 70 (2019).
- S.R. Ardekani, A.S.R. Aghdam, M. Nazari, A. Bayat, E. Yazdani and E. Saievar-Iranizad, J. Anal. Appl. Pyrol., 141, 104631 (2019); https://doi.org/10.1016/j.jaap.2019.104631
- K. Sasikumar, R. Bharathikannan, G. Sujithkumar, G.J. Arputhavalli, S. Raja, M. Vidhya, R. Marnadu and R. Suresh, J. Supercond. Nov. Magn., 34, 2189 (2021); https://doi.org/10.1007/s10948-021-05948-1
- P. Rao, R. Godbole and S. Bhagwat, Mater. Chem. Phys., 171, 260 (2016); https://doi.org/10.1016/j.matchemphys.2016.01.016
- M. Vadivel, R. Ramesh Babu and M. Sridharan, J. Supercond. Nov. Magn., 35, 2563 (2022); https://doi.org/10.1007/s10948-022-06309-2
- A. Faramawy and H. El-Sayed, Nano Express, 4, 045007 (2023); https://doi.org/10.1088/2632-959X/ad0ee9
- V.D. Patil, D.A. Patil, A.L. Jadhav, S.L. Jadhav, A.V. Kadam, S.R. Dandwate and B.R. Shinde, Discover Electrochem., 1, 2 (2024); https://doi.org/10.1007/s44373-024-00003-9
- V.Y. Popova, V.V. Petrov, A.P. Ivanishcheva and E.M. Bayan, Funct. Mater. Lett., 17, 2440005 (2024); https://doi.org/10.1142/S1793604724400058
- K. Tanbir, M.P. Ghosh, R.K. Singh, M. Kar and S. Mukherjee, J. Mater. Sci. Mater. Electron., 31, 435 (2020); https://doi.org/10.1007/s10854-019-02546-9
- S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, S. More and K. Jadhav, Ceram. Int., 46, 13170 (2020); https://doi.org/10.1016/j.ceramint.2020.02.091
- S.K. Paswan, S. Kumari, M. Kar, A. Singh, H. Pathak, J. Borah and L. Kumar, J. Phys. Chem. Solids, 151, 109928 (2021); https://doi.org/10.1016/j.jpcs.2020.109928
- V. Bhuvaneshwari, N. Lenin, C. Shiva, M. Kathirvel, V. Ragavendran, A. Rajeshwari, B. Guruprakash and G.G.V. Kumar, Mater. Sci. Eng. B, 288, 116184 (2023); https://doi.org/10.1016/j.mseb.2022.116184
- V. Lakhani, T. Pathak, N. Vasoya and K. Modi, Solid State Sci., 13, 539 (2011); https://doi.org/10.1016/j.solidstatesciences.2010.12.023
- S.A. Jadhav, M.V. Khedkar, S.B. Somvanshi and K. Jadhav, Ceram. Int., 47, 28623 (2021); https://doi.org/10.1016/j.ceramint.2021.07.021
- T. Tatarchuk, M. Myslin, I. Mironyuk, M. Bououdina, A.T. Pędziwiatr, R. Gargula, B.F. Bogacz and P. Kurzydło, J. Alloys Compd., 819, 152945 (2020); https://doi.org/10.1016/j.jallcom.2019.152945
- Y.P. Ubale, P.S. Patil, S.S. Gawali, S.K. Modi, K.B. Modi and K.V. Jadhav, J. Supercond. Nov. Magn., 38, 93 (2025); https://doi.org/10.1007/s10948-025-06935-6
- M.T. Kotkar, S.M. Wani, P.G. Shinde, A.G. Patil and K.M. Jadhav, Solid State Commun., 400, 115914 (2025); https://doi.org/10.1016/j.ssc.2025.115914
- A.R. Chavan, M.V. Shisode, P.G. Undre and K.M. Jadhav, Appl. Phys., A Mater. Sci. Process., 125, 472 (2019); https://doi.org/10.1007/s00339-019-2768-5
- A.R. Chavan, S.D. Birajdar, R.R. Chilwar and K.M. Jadhav, J. Alloys Compd., 735, 2287 (2018); https://doi.org/10.1016/j.jallcom.2017.11.326
- C. Cherpin, D. Lister, F. Dacquait and L. Liu, Materials, 14, 2557 (2021); https://doi.org/10.3390/ma14102557
- G. Dixit, J. Singh, R. Srivastava, H. Agrawal and R. Chaudhary, Adv. Mater. Lett., 3, 21 (2012); https://doi.org/10.5185/amlett.2011.6280
References
S.F. Shaikh, M. Ubaidullah, R.S. Mane and A.M. Al-Enizi, in eds.: R.S. Mane and V.V. Jadhav, Types, Synthesis Methods and Applications of Ferrites, In: Spinel Ferrite Nanostructures for Energy Storage Devices, Elsevier, Chap. 4, pp. 51-82 (2020).
R. Bharamagoudar, A. Patil, S. Mathad and L. Kankanawadi, Int. J. Self-Propag. High-Temp. Synth., 33, 165 (2024); https://doi.org/10.3103/S1061386224700110
T. Zeeshan, S. Waseem, Z. Ejaz, Z. Kayani and T.E. Kuntsevich, Inorg. Chem. Commun., 162, 111687 (2024); https://doi.org/10.1016/j.inoche.2023.111687
S.V. Rathod, V.U. Magar, S.V. Rajmane, D.R. Sapate and K.M. Jadhav, J. Mater. Sci. Mater. Electron., 36, 191 (2025); https://doi.org/10.1007/s10854-025-14227-x
V.U. Magar, S.V. Rathod, P.S. Patil, S. More and M. Babrekar, J. Mater. Sci. Mater. Electron., 35, 967 (2024); https://doi.org/10.1007/s10854-024-12705-2
I. Hossain, M.T. Islam, N.M. Sahar, M. Samsuzzaman, A. Alzamil and M.S. Soliman, J. Sci.: Adv. Mater. Dev., 9, 100750 (2024); https://doi.org/10.1016/j.jsamd.2024.100750
H.L. Andersen, C. Granados-Miralles, K.M.Ø. Jensen, M. Saura-Múzquiz and M. Christensen, ACS Nano, 18, 9852 (2024); https://doi.org/10.1021/acsnano.3c08772
M.A. Rafiq, A. Javed, M.N. Rasul, M.A. Khan and A. Hussain, Ceram. Int., 46, 4976 (2020); https://doi.org/10.1016/j.ceramint.2019.10.237
W. Mansouri, F. Hcini, S. Hcini, A.H. Alshehri, F. Bahri, S. Bouzidi, J. Dhahri, T. Guerfel and M.L. Bouazizi, J. Mater. Sci. Mater. Electron., 33, 23468 (2022); https://doi.org/10.1007/s10854-022-09107-7
U. Ahmad, M. Afzia, F. Shah, B. Ismail, A. Rahim and R.A. Khan, Mater. Sci. Semicond. Process., 148, 106830 (2022); https://doi.org/10.1016/j.mssp.2022.106830
S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya and V. Singh, J. Mol. Struct., 1076, 55 (2014); https://doi.org/10.1016/j.molstruc.2014.07.048
R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař and M. Holek, J. Phys. Chem. Solids, 110, 87 (2017); https://doi.org/10.1016/j.jpcs.2017.05.029
S. Verma, A. Maurya, H. Verma, R. Singh and B. Bhoi, Chem. Phys. Impact, 9, 100674 (2024); https://doi.org/10.1016/j.chphi.2024.100674
P.S. Patil, Y.P. Ubale, S.S. Gawali, M.R. Pai and K. Jadhav, Ceram. Int., 50, 54155 (2024); https://doi.org/10.1016/j.ceramint.2024.10.272
S.S. Roy, Ph.D. Thesis, Synthesis and Characterization of Tin Oxide and Copper Doped Tin Oxide Thin Films by Spray Pyrolysis, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh (2009).
R. Rani, S. Sharma, M. Quaglio, S. Hernandez, S. Bianco, A. Chiodoni, and C.F. Pirri, in eds.: R. Rai, Fabrication of KNN Thin-Films via a Spin Coating Technique, In: Smart Materials for Smart Living, Nova Science Publishers INC., India, Chap. 9, p. 277 (2017).
M.N. Ghazzal, E. Aubry, N. Chaoui and D. Robert, Beilstein J. Nanotechnol., 6, 2039 (2015); https://doi.org/10.3762/bjnano.6.207
E.G. Agbim, I.L. Ikhioya and A J. Ekpunobi, IOSR J. Appl. Phys., 11, 70 (2019).
S.R. Ardekani, A.S.R. Aghdam, M. Nazari, A. Bayat, E. Yazdani and E. Saievar-Iranizad, J. Anal. Appl. Pyrol., 141, 104631 (2019); https://doi.org/10.1016/j.jaap.2019.104631
K. Sasikumar, R. Bharathikannan, G. Sujithkumar, G.J. Arputhavalli, S. Raja, M. Vidhya, R. Marnadu and R. Suresh, J. Supercond. Nov. Magn., 34, 2189 (2021); https://doi.org/10.1007/s10948-021-05948-1
P. Rao, R. Godbole and S. Bhagwat, Mater. Chem. Phys., 171, 260 (2016); https://doi.org/10.1016/j.matchemphys.2016.01.016
M. Vadivel, R. Ramesh Babu and M. Sridharan, J. Supercond. Nov. Magn., 35, 2563 (2022); https://doi.org/10.1007/s10948-022-06309-2
A. Faramawy and H. El-Sayed, Nano Express, 4, 045007 (2023); https://doi.org/10.1088/2632-959X/ad0ee9
V.D. Patil, D.A. Patil, A.L. Jadhav, S.L. Jadhav, A.V. Kadam, S.R. Dandwate and B.R. Shinde, Discover Electrochem., 1, 2 (2024); https://doi.org/10.1007/s44373-024-00003-9
V.Y. Popova, V.V. Petrov, A.P. Ivanishcheva and E.M. Bayan, Funct. Mater. Lett., 17, 2440005 (2024); https://doi.org/10.1142/S1793604724400058
K. Tanbir, M.P. Ghosh, R.K. Singh, M. Kar and S. Mukherjee, J. Mater. Sci. Mater. Electron., 31, 435 (2020); https://doi.org/10.1007/s10854-019-02546-9
S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, S. More and K. Jadhav, Ceram. Int., 46, 13170 (2020); https://doi.org/10.1016/j.ceramint.2020.02.091
S.K. Paswan, S. Kumari, M. Kar, A. Singh, H. Pathak, J. Borah and L. Kumar, J. Phys. Chem. Solids, 151, 109928 (2021); https://doi.org/10.1016/j.jpcs.2020.109928
V. Bhuvaneshwari, N. Lenin, C. Shiva, M. Kathirvel, V. Ragavendran, A. Rajeshwari, B. Guruprakash and G.G.V. Kumar, Mater. Sci. Eng. B, 288, 116184 (2023); https://doi.org/10.1016/j.mseb.2022.116184
V. Lakhani, T. Pathak, N. Vasoya and K. Modi, Solid State Sci., 13, 539 (2011); https://doi.org/10.1016/j.solidstatesciences.2010.12.023
S.A. Jadhav, M.V. Khedkar, S.B. Somvanshi and K. Jadhav, Ceram. Int., 47, 28623 (2021); https://doi.org/10.1016/j.ceramint.2021.07.021
T. Tatarchuk, M. Myslin, I. Mironyuk, M. Bououdina, A.T. Pędziwiatr, R. Gargula, B.F. Bogacz and P. Kurzydło, J. Alloys Compd., 819, 152945 (2020); https://doi.org/10.1016/j.jallcom.2019.152945
Y.P. Ubale, P.S. Patil, S.S. Gawali, S.K. Modi, K.B. Modi and K.V. Jadhav, J. Supercond. Nov. Magn., 38, 93 (2025); https://doi.org/10.1007/s10948-025-06935-6
M.T. Kotkar, S.M. Wani, P.G. Shinde, A.G. Patil and K.M. Jadhav, Solid State Commun., 400, 115914 (2025); https://doi.org/10.1016/j.ssc.2025.115914
A.R. Chavan, M.V. Shisode, P.G. Undre and K.M. Jadhav, Appl. Phys., A Mater. Sci. Process., 125, 472 (2019); https://doi.org/10.1007/s00339-019-2768-5
A.R. Chavan, S.D. Birajdar, R.R. Chilwar and K.M. Jadhav, J. Alloys Compd., 735, 2287 (2018); https://doi.org/10.1016/j.jallcom.2017.11.326
C. Cherpin, D. Lister, F. Dacquait and L. Liu, Materials, 14, 2557 (2021); https://doi.org/10.3390/ma14102557
G. Dixit, J. Singh, R. Srivastava, H. Agrawal and R. Chaudhary, Adv. Mater. Lett., 3, 21 (2012); https://doi.org/10.5185/amlett.2011.6280