Copyright (c) 2025 Umme Salma, Ropak, Mohsina Akter Nopur, M. Ferdus Shikder

This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of Crystal Violet onto Agricultural Waste-Derived Biosorbents: A Study of Isotherm, Kinetic and Thermodynamic Behaviours
Corresponding Author(s) : U. Salma
Asian Journal of Chemistry,
Vol. 37 No. 11 (2025): Vol 37 Issue 11, 2025
Abstract
Developing sustainable and economically viable removal approaches is crucial, due to the rampant use of synthetic dyes, such as crystal violet, in effluent poses significant environmental and health hazards. To remove crystal violet from aqueous medium, this work emphasizes the application of three inexpensive biosorbents, namely tea waste (TW), rice husk (RH) and sugarcane bagasse (SCB). The functional and structural properties of the biosorbents were determined using FTIR, FE-SEM, pHpzc analysis, XRD and BET surface area measurements. To optimize the experimental parameters, batch adsorption experiments were performed at an initial concentration of 40 ppm of dye, a biosorbent dosage of 1 g/L, a solution pH of 9 and a temperature of 30 ºC, which resulted in maximum adsorption efficiency. Analysis of the isotherm data showed that crystal violet adsorption predominantly followed the Langmuir model. The biosorbents SCB, RH and TW exhibited the maximum adsorption capacities (qm) of 61.35, 58.82 and 53.19 mg/g, respectively. Kinetic results indicated a strong correlation with the pseudo-second-order model, implying that chemical interactions played a significant role in the adsorption process. The research illustrates that TW, RH and SCB are simple, affordable, readily available and efficient options for use as biosorbents in wastewater treatment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Westall and A. Brack, Space Sci. Rev., 214, 50 (2018); https://doi.org/10.1007/s11214-018-0476-7
- H. Shemer, S. Wald, and R. Semiat, Membranes, 13, 612 (2023); https://doi.org/10.3390/membranes13060612
- A. Ayele, D. Getachew, M. Kamaraj and A. Suresh, J. Chem., 2021, 9923643 (2021); https://doi.org/10.1155/2021/9923643
- Aruna, N. Bagotia, A.K. Sharma and S. Kumar, Chemosphere, 268, 129309 (2021); https://doi.org/10.1016/j.chemosphere.2020.129309
- R. Foroutan, S.J. Peighambardoust, S.H. Peighambardoust, M. Pateiro and J.M. Lorenzo, Molecules, 26, 2241 (2021); https://doi.org/10.3390/molecules26082241
- S. Pashaei-Fakhri, S.J. Peighambardoust, R. Foroutan, N. Arsalani and B. Ramavandi, Chemosphere, 270, 129419 (2021); https://doi.org/10.1016/j.chemosphere.2020.129419
- H. Mittal, A. Al Alili, P.P. Morajkar and S.M. Alhassan, J. Mol. Liq., 323, 115034 (2021); https://doi.org/10.1016/j.molliq.2020.115034
- V. Katheresan, J. Kansedo and S.Y. Lau, J. Environ. Chem. Eng., 6, 4676 (2018); https://doi.org/10.1016/j.jece.2018.06.060
- H. Jain, V. Yadav, V.D. Rajput, T. Minkina, S. Agarwal and M.C. Garg, Water Air Soil Pollut., 233, 187 (2022); https://doi.org/10.1007/s11270-022-05655-0
- N. Shafiq, A.A.E. Hussein, M.F. Nuruddin and H. Al Mattarneh, Proc. Inst. Civ. Eng., Eng. Sustain., 171, 123 (2018); https://doi.org/10.1680/jensu.15.00014
- M. Saidul Islam Ropak, F. Yasmin, M.A. Rahaman and U. Salma, Colloids Surf. A Physicochem. Eng. Asp., 704, 135477 (2025); https://doi.org/10.1016/j.colsurfa.2024.135477
- Alokika, Anu, A. Kumar, V. Kumar and B. Singh, Int. J. Biol. Macromol., 169, 564 (2021); https://doi.org/10.1016/j.ijbiomac.2020.12.175
- K.T. Tong, R. Vinai and M.N. Soutsos, J. Clean. Prod., 201, 272 (2018); https://doi.org/10.1016/j.jclepro.2018.08.025
- B. Debnath, D. Haldar and M.K. Purkait, J. Environ. Chem. Eng., 9, 106179 (2021); https://doi.org/10.1016/j.jece.2021.106179
- D.H.K. Reddy, K. Seshaiah, A.V.R. Reddy, M.M. Rao and M.C. Wang, J. Hazard. Mater., 174, 831 (2010); https://doi.org/10.1016/j.jhazmat.2009.09.128
- P.L. Homagai, R. Poudel, S. Poudel and A. Bhattarai, Heliyon, 8, e09261 (2022); https://doi.org/10.1016/j.heliyon.2022.e09261
- Z. Jiang and D. Hu, J. Mol. Liq., 276, 105 (2019); https://doi.org/10.1016/j.molliq.2018.11.153
- T. Islam, C. Peng, I. Ali, J. Li, Z.M. Khan, M. Sultan and I. Naz, Arab. J. Sci. Eng., 46, 233 (2021); https://doi.org/10.1007/s13369-020-04537-z
- A. Nasar, Biomass Convers. Biorefin., 13, 1399 (2023); https://doi.org/10.1007/s13399-020-01205-y
- H.S. Hafid, F.N. Omar, J. Zhu and M. Wakisaka, Carbohydr. Polym., 260, 117789 (2021); https://doi.org/10.1016/j.carbpol.2021.117789
- S. Vigneshwaran, M. Uthayakumar and V. Arumugaprabu, J. Clean. Prod., 276, 124278 (2020); https://doi.org/10.1016/j.jclepro.2020.124278
- K. Bhandari, S. Roy Maulik and A.R. Bhattacharyya, J. Inst. Eng. Ser. E, 101, 99 (2020); https://doi.org/10.1007/s40034-020-00160-7
- T. Ullah, H. Gul, F. Khitab, R. Khattak, Y. Ali, S. Rasool, M.S. Khan and I. Zekker, Water, 14, 3014 (2022); https://doi.org/10.3390/w14193014
- T.E. Abilio, B.C. Soares, J.C. José, P.A. Milani, G. Labuto and E.N.V.M. Carrilho, Environ. Sci. Pollut. Res. Int., 28, 24816 (2021); https://doi.org/10.1007/s11356-020-11726-8
- M. Gun, H. Arslan, M. Saleh, M. Yalvac and N. Dizge, Int. J. Environ. Res., 16, 20 (2022); https://doi.org/10.1007/s41742-022-00399-5
- L. Liu, S. Fan and Y. Li, Int. J. Environ. Res. Public Health, 15, 1321 (2018); https://doi.org/10.3390/ijerph15071321
- U. Kamran, H.N. Bhatti, S. Noreen, M.A. Tahir and S.J. Park, Chemosphere, 291, 132796 (2022); https://doi.org/10.1016/j.chemosphere.2021.132796
- X. Fan, L. Deng, K. Li, H. Lu, R. Wang and W. Li, Colloid Interface Sci. Commun., 44, 100485 (2021); https://doi.org/10.1016/j.colcom.2021.100485
- T.-H. Liou and Y.H. Liou, Materials, 14, 1214 (2021); https://doi.org/10.3390/ma14051214
- M. Bansal, P.K. Patnala and T. Dugmore, Curr. Res. Green Sustain. Chem., 3, 100036 (2020); https://doi.org/10.1016/j.crgsc.2020.100036
- A. Ebrahimian and E. Saberikhah, Cellul. Chem. Technol., 47, 657 (2013).
- F. Batool, S. Kanwal, H. Kanwal, S. Noreen, M.S. Hodhod, M. Mustaqeem, G. Sharif, H.K. Naeem, J. Zahid and A.R.Z. Gaafar, Molecules, 28, 7124 (2023); https://doi.org/10.3390/molecules28207124
- F. Naseeruteen, N.S.A. Hamid, F.B.M. Suah, W.S.W. Ngah and F.S. Mehamod, Int. J. Biol. Macromol., 107, 1270 (2018); https://doi.org/10.1016/j.ijbiomac.2017.09.111
- J. Wang, Z. Zhang, D. He, H. Yang, D. Jin, J. Qu and Y. Zhang, Sustainability, 12, 8335 (2020); https://doi.org/10.3390/su12208335
- H. Li, H. Jin, R. Li, J. Hua, Z. Zhang and R. Li, Sci. Rep., 14, 1217 (2024); https://doi.org/10.1038/s41598-023-50368-x
- S. Shakoor and A. Nasar, Groundw. Sustain. Dev., 7, 30 (2018); https://doi.org/10.1016/j.gsd.2018.03.004
- A.E. Ahmed and K. Majewska-Nowak, Environ. Prot. Eng., 47, 109 (2020); https://doi.org/10.37190/epe210309
- N.K. Mondal and S. Kar, Appl. Water Sci., 8, 157 (2018); https://doi.org/10.1007/s13201-018-0811-x
- S. El Bourachdi, F. El Ouadrhiri, F. Moussaoui, E.A.M. Saleh, A. El Amri, R.H. Althomali, A.F. Kassem, M.M. Moharam, A.R. Ayub, K. Husain, I. Hassan and A. Lahkimi, Int. J. Chem. Eng., 2024, 8222314 (2024); https://doi.org/10.1155/2024/8222314
- F.Z. Ankouri, H. Lamkhanter, A. Jaafar, Z. Lakbaibi and H. Mountacer, Chem. Africa, 6, 1495 (2023); https://doi.org/10.1007/s42250-022-00579-y
- A.A. Oladipo, M. Gazi and S. Saber-Samandari, J. Taiwan Inst. Chem. Eng., 45, 653 (2014); https://doi.org/10.1016/j.jtice.2013.07.013
- A.A. Inyinbor, F.A. Adekola and G.A. Olatunji, S. Afr. J. Chem., 68, 115 (2015).
- L.R. Martins, J.A.V. Rodrigues, O.F.H. Adarme, T.M.S. Melo, L.V.A. Gurgel and L.F. Gil, J. Colloid Interface Sci., 494, 223 (2017); https://doi.org/10.1016/j.jcis.2017.01.085
- A. Ghazali, M. Shirani, A. Semnani, V. Zare-Shahabadi and M. Nekoeinia, J. Environ. Chem. Eng., 6, 3942 (2018); https://doi.org/10.1016/j.jece.2018.05.043
- H.M.H. Gad and A.A. El-Sayed, J. Hazard. Mater., 168, 1070 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.155
- A. Babapoor, O. Rafiei, Y. Mousavi, M.M. Azizi, M. Paar and A. Nuri, Int. J. Chem. Eng., 2022, 1 (2022); https://doi.org/10.1155/2022/3282448
- V.S. Munagapati, H.Y. Wen, A.R.K. Gollakota, J.C. Wen, C.M. Shu, K.Y. Andrew Lin, Z. Tian, J.H. Wen, G.M. Reddy and G.V. Zyryanov, J. Mol. Liq., 345, 118255 (2022); https://doi.org/10.1016/j.molliq.2021.118255
- S. Tunali, A. Ozcan, Z. Kaynak, A.S. Ozcan and T. Akar, J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 42, 591 (2007); https://doi.org/10.1080/10934520701244359
- Q. Li, Q. Yue, Y. Su, B. Gao, L. Fu, J. Hazard. Mater., 147, 370 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.024
- D. Parashar and R. Gandhimathi, Water Air Soil Pollut., 233, 400 (2022); https://doi.org/10.1007/s11270-022-05857-6
- D. Sana and S. Jalila, Chin. J. Chem. Eng., 25, 1282 (2017); https://doi.org/10.1016/j.cjche.2017.01.012
- A.N. Ebelegi, N. Ayawei and D. Wankasi, Open J. Phys. Chem., 10, 166 (2020); https://doi.org/10.4236/ojpc.2020.103010
- E. Wibowo, M. Rokhmat, Sutisna, Khairurrijal and M. Abdullah, Desalination, 409, 146 (2017); https://doi.org/10.1016/j.desal.2017.01.026
- Y. Erdogan, B. Isik, V. Ugraskan and F. Cakar, Biomass Convers. Biorefin., 14, 663 (2024); https://doi.org/10.1007/s13399-022-02349-9
- H.R. Mahmoud, S.M. Ibrahim and S.A. El-Molla, Adv. Powder Technol., 27, 223 (2016); https://doi.org/10.1016/j.apt.2015.12.006
- S.D. Khattri and M.K. Singh, Environ. Prog. Sustain. Energy, 31, 435 (2012); https://doi.org/10.1002/ep.10567
- S.D. Khattri and M.K. Singh, Water Air Soil Pollut., 120, 283 (2000); https://doi.org/10.1023/A:1005207803041
- R. Ahmad, J. Hazard. Mater., 171, 767 (2009); https://doi.org/10.1016/j.jhazmat.2009.06.060
- P.D. Saha, S. Chakraborty and S. Chowdhury, Colloids Surf. B Biointerfaces, 92, 262 (2012); https://doi.org/10.1016/j.colsurfb.2011.11.057
- D. Kavitha and C. Namasivayam, Bioresour. Technol., 98, 14 (2007); https://doi.org/10.1016/j.biortech.2005.12.008
- K. Amela, M.A. Hassen and D. Kerroum, Energy Procedia, 19, 286 (2012); https://doi.org/10.1016/j.egypro.2012.05.208
- X.S. Wang, Y. Zhou, Y. Jiang and C. Sun, J. Hazard. Mater., 157, 374 (2008); https://doi.org/10.1016/j.jhazmat.2008.01.004
References
F. Westall and A. Brack, Space Sci. Rev., 214, 50 (2018); https://doi.org/10.1007/s11214-018-0476-7
H. Shemer, S. Wald, and R. Semiat, Membranes, 13, 612 (2023); https://doi.org/10.3390/membranes13060612
A. Ayele, D. Getachew, M. Kamaraj and A. Suresh, J. Chem., 2021, 9923643 (2021); https://doi.org/10.1155/2021/9923643
Aruna, N. Bagotia, A.K. Sharma and S. Kumar, Chemosphere, 268, 129309 (2021); https://doi.org/10.1016/j.chemosphere.2020.129309
R. Foroutan, S.J. Peighambardoust, S.H. Peighambardoust, M. Pateiro and J.M. Lorenzo, Molecules, 26, 2241 (2021); https://doi.org/10.3390/molecules26082241
S. Pashaei-Fakhri, S.J. Peighambardoust, R. Foroutan, N. Arsalani and B. Ramavandi, Chemosphere, 270, 129419 (2021); https://doi.org/10.1016/j.chemosphere.2020.129419
H. Mittal, A. Al Alili, P.P. Morajkar and S.M. Alhassan, J. Mol. Liq., 323, 115034 (2021); https://doi.org/10.1016/j.molliq.2020.115034
V. Katheresan, J. Kansedo and S.Y. Lau, J. Environ. Chem. Eng., 6, 4676 (2018); https://doi.org/10.1016/j.jece.2018.06.060
H. Jain, V. Yadav, V.D. Rajput, T. Minkina, S. Agarwal and M.C. Garg, Water Air Soil Pollut., 233, 187 (2022); https://doi.org/10.1007/s11270-022-05655-0
N. Shafiq, A.A.E. Hussein, M.F. Nuruddin and H. Al Mattarneh, Proc. Inst. Civ. Eng., Eng. Sustain., 171, 123 (2018); https://doi.org/10.1680/jensu.15.00014
M. Saidul Islam Ropak, F. Yasmin, M.A. Rahaman and U. Salma, Colloids Surf. A Physicochem. Eng. Asp., 704, 135477 (2025); https://doi.org/10.1016/j.colsurfa.2024.135477
Alokika, Anu, A. Kumar, V. Kumar and B. Singh, Int. J. Biol. Macromol., 169, 564 (2021); https://doi.org/10.1016/j.ijbiomac.2020.12.175
K.T. Tong, R. Vinai and M.N. Soutsos, J. Clean. Prod., 201, 272 (2018); https://doi.org/10.1016/j.jclepro.2018.08.025
B. Debnath, D. Haldar and M.K. Purkait, J. Environ. Chem. Eng., 9, 106179 (2021); https://doi.org/10.1016/j.jece.2021.106179
D.H.K. Reddy, K. Seshaiah, A.V.R. Reddy, M.M. Rao and M.C. Wang, J. Hazard. Mater., 174, 831 (2010); https://doi.org/10.1016/j.jhazmat.2009.09.128
P.L. Homagai, R. Poudel, S. Poudel and A. Bhattarai, Heliyon, 8, e09261 (2022); https://doi.org/10.1016/j.heliyon.2022.e09261
Z. Jiang and D. Hu, J. Mol. Liq., 276, 105 (2019); https://doi.org/10.1016/j.molliq.2018.11.153
T. Islam, C. Peng, I. Ali, J. Li, Z.M. Khan, M. Sultan and I. Naz, Arab. J. Sci. Eng., 46, 233 (2021); https://doi.org/10.1007/s13369-020-04537-z
A. Nasar, Biomass Convers. Biorefin., 13, 1399 (2023); https://doi.org/10.1007/s13399-020-01205-y
H.S. Hafid, F.N. Omar, J. Zhu and M. Wakisaka, Carbohydr. Polym., 260, 117789 (2021); https://doi.org/10.1016/j.carbpol.2021.117789
S. Vigneshwaran, M. Uthayakumar and V. Arumugaprabu, J. Clean. Prod., 276, 124278 (2020); https://doi.org/10.1016/j.jclepro.2020.124278
K. Bhandari, S. Roy Maulik and A.R. Bhattacharyya, J. Inst. Eng. Ser. E, 101, 99 (2020); https://doi.org/10.1007/s40034-020-00160-7
T. Ullah, H. Gul, F. Khitab, R. Khattak, Y. Ali, S. Rasool, M.S. Khan and I. Zekker, Water, 14, 3014 (2022); https://doi.org/10.3390/w14193014
T.E. Abilio, B.C. Soares, J.C. José, P.A. Milani, G. Labuto and E.N.V.M. Carrilho, Environ. Sci. Pollut. Res. Int., 28, 24816 (2021); https://doi.org/10.1007/s11356-020-11726-8
M. Gun, H. Arslan, M. Saleh, M. Yalvac and N. Dizge, Int. J. Environ. Res., 16, 20 (2022); https://doi.org/10.1007/s41742-022-00399-5
L. Liu, S. Fan and Y. Li, Int. J. Environ. Res. Public Health, 15, 1321 (2018); https://doi.org/10.3390/ijerph15071321
U. Kamran, H.N. Bhatti, S. Noreen, M.A. Tahir and S.J. Park, Chemosphere, 291, 132796 (2022); https://doi.org/10.1016/j.chemosphere.2021.132796
X. Fan, L. Deng, K. Li, H. Lu, R. Wang and W. Li, Colloid Interface Sci. Commun., 44, 100485 (2021); https://doi.org/10.1016/j.colcom.2021.100485
T.-H. Liou and Y.H. Liou, Materials, 14, 1214 (2021); https://doi.org/10.3390/ma14051214
M. Bansal, P.K. Patnala and T. Dugmore, Curr. Res. Green Sustain. Chem., 3, 100036 (2020); https://doi.org/10.1016/j.crgsc.2020.100036
A. Ebrahimian and E. Saberikhah, Cellul. Chem. Technol., 47, 657 (2013).
F. Batool, S. Kanwal, H. Kanwal, S. Noreen, M.S. Hodhod, M. Mustaqeem, G. Sharif, H.K. Naeem, J. Zahid and A.R.Z. Gaafar, Molecules, 28, 7124 (2023); https://doi.org/10.3390/molecules28207124
F. Naseeruteen, N.S.A. Hamid, F.B.M. Suah, W.S.W. Ngah and F.S. Mehamod, Int. J. Biol. Macromol., 107, 1270 (2018); https://doi.org/10.1016/j.ijbiomac.2017.09.111
J. Wang, Z. Zhang, D. He, H. Yang, D. Jin, J. Qu and Y. Zhang, Sustainability, 12, 8335 (2020); https://doi.org/10.3390/su12208335
H. Li, H. Jin, R. Li, J. Hua, Z. Zhang and R. Li, Sci. Rep., 14, 1217 (2024); https://doi.org/10.1038/s41598-023-50368-x
S. Shakoor and A. Nasar, Groundw. Sustain. Dev., 7, 30 (2018); https://doi.org/10.1016/j.gsd.2018.03.004
A.E. Ahmed and K. Majewska-Nowak, Environ. Prot. Eng., 47, 109 (2020); https://doi.org/10.37190/epe210309
N.K. Mondal and S. Kar, Appl. Water Sci., 8, 157 (2018); https://doi.org/10.1007/s13201-018-0811-x
S. El Bourachdi, F. El Ouadrhiri, F. Moussaoui, E.A.M. Saleh, A. El Amri, R.H. Althomali, A.F. Kassem, M.M. Moharam, A.R. Ayub, K. Husain, I. Hassan and A. Lahkimi, Int. J. Chem. Eng., 2024, 8222314 (2024); https://doi.org/10.1155/2024/8222314
F.Z. Ankouri, H. Lamkhanter, A. Jaafar, Z. Lakbaibi and H. Mountacer, Chem. Africa, 6, 1495 (2023); https://doi.org/10.1007/s42250-022-00579-y
A.A. Oladipo, M. Gazi and S. Saber-Samandari, J. Taiwan Inst. Chem. Eng., 45, 653 (2014); https://doi.org/10.1016/j.jtice.2013.07.013
A.A. Inyinbor, F.A. Adekola and G.A. Olatunji, S. Afr. J. Chem., 68, 115 (2015).
L.R. Martins, J.A.V. Rodrigues, O.F.H. Adarme, T.M.S. Melo, L.V.A. Gurgel and L.F. Gil, J. Colloid Interface Sci., 494, 223 (2017); https://doi.org/10.1016/j.jcis.2017.01.085
A. Ghazali, M. Shirani, A. Semnani, V. Zare-Shahabadi and M. Nekoeinia, J. Environ. Chem. Eng., 6, 3942 (2018); https://doi.org/10.1016/j.jece.2018.05.043
H.M.H. Gad and A.A. El-Sayed, J. Hazard. Mater., 168, 1070 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.155
A. Babapoor, O. Rafiei, Y. Mousavi, M.M. Azizi, M. Paar and A. Nuri, Int. J. Chem. Eng., 2022, 1 (2022); https://doi.org/10.1155/2022/3282448
V.S. Munagapati, H.Y. Wen, A.R.K. Gollakota, J.C. Wen, C.M. Shu, K.Y. Andrew Lin, Z. Tian, J.H. Wen, G.M. Reddy and G.V. Zyryanov, J. Mol. Liq., 345, 118255 (2022); https://doi.org/10.1016/j.molliq.2021.118255
S. Tunali, A. Ozcan, Z. Kaynak, A.S. Ozcan and T. Akar, J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 42, 591 (2007); https://doi.org/10.1080/10934520701244359
Q. Li, Q. Yue, Y. Su, B. Gao, L. Fu, J. Hazard. Mater., 147, 370 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.024
D. Parashar and R. Gandhimathi, Water Air Soil Pollut., 233, 400 (2022); https://doi.org/10.1007/s11270-022-05857-6
D. Sana and S. Jalila, Chin. J. Chem. Eng., 25, 1282 (2017); https://doi.org/10.1016/j.cjche.2017.01.012
A.N. Ebelegi, N. Ayawei and D. Wankasi, Open J. Phys. Chem., 10, 166 (2020); https://doi.org/10.4236/ojpc.2020.103010
E. Wibowo, M. Rokhmat, Sutisna, Khairurrijal and M. Abdullah, Desalination, 409, 146 (2017); https://doi.org/10.1016/j.desal.2017.01.026
Y. Erdogan, B. Isik, V. Ugraskan and F. Cakar, Biomass Convers. Biorefin., 14, 663 (2024); https://doi.org/10.1007/s13399-022-02349-9
H.R. Mahmoud, S.M. Ibrahim and S.A. El-Molla, Adv. Powder Technol., 27, 223 (2016); https://doi.org/10.1016/j.apt.2015.12.006
S.D. Khattri and M.K. Singh, Environ. Prog. Sustain. Energy, 31, 435 (2012); https://doi.org/10.1002/ep.10567
S.D. Khattri and M.K. Singh, Water Air Soil Pollut., 120, 283 (2000); https://doi.org/10.1023/A:1005207803041
R. Ahmad, J. Hazard. Mater., 171, 767 (2009); https://doi.org/10.1016/j.jhazmat.2009.06.060
P.D. Saha, S. Chakraborty and S. Chowdhury, Colloids Surf. B Biointerfaces, 92, 262 (2012); https://doi.org/10.1016/j.colsurfb.2011.11.057
D. Kavitha and C. Namasivayam, Bioresour. Technol., 98, 14 (2007); https://doi.org/10.1016/j.biortech.2005.12.008
K. Amela, M.A. Hassen and D. Kerroum, Energy Procedia, 19, 286 (2012); https://doi.org/10.1016/j.egypro.2012.05.208
X.S. Wang, Y. Zhou, Y. Jiang and C. Sun, J. Hazard. Mater., 157, 374 (2008); https://doi.org/10.1016/j.jhazmat.2008.01.004