Copyright (c) 2025 S. Rekha, S. Tamilselvan, Malik Nasibullah, Mohd Asif, P. Manikandan, V.S. Jeba Reeda, S. Kaleeswaran

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Spectroscopic Characterization (FT-IR, FT-Raman and NMR) and in vitro Anticancer Activity of (E)-5-Bromo-3-((4-chloro-3-(trifluoromethyl)phenyl)imino)indolin-2-one
Corresponding Author(s) : S. Rekha
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
This comprehensive study, combining theoretical insights with experimental validation, enhances the understanding of molecular structure, vibrational dynamics and electron delocalization through spectroscopic techniques. These methods were employed to analyze the synthesized hybrid oxindole Schiff base, specifically (E)-5-bromo-3-((4-chloro-(trifluoromethyl)phenyl)imino)indolin-2-one (5BTPIO) molecule, as well as its biological activities. Electron localization function (ELF), localized orbital locator (LOL) and reduced density gradient (RDG) investigations facilitated to classify the weakest interactions, bonding zones and electron energy density, respectively. The in vitro anticancer properties of the 5BTPIO molecule were also investigated. The in silico docking studies were executed to preliminarily assess the anticancer activity against 3G74, 4Z8Z and 7PGL proteins, revealing binding affinities of -6.08, -5.60 and -6.72 kcal/mol, respectively. DFT proved valuable in examining the stability of the molecular structure under optimal conditions, facilitating comparison studies that integrated both theoretical and experimental data.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.N. Venugopala, M. Kandeel, M. Pillay, P.K. Deb, H.H. Abdallah, M.F. Mahomoodally and D. Chopra, Antibiotics, 9, 559 (2020); https://doi.org/10.3390/antibiotics9090559
- M. Asif, F. Aqil, F.A. Alasmary, A. almalki, A.R. Khan and M. Nasibullah, Med. Chem. Res., 32, 1001 (2023); https://doi.org/10.1007/s00044-023-03053-7
- S. Khalid, S.H. Sumrra and Z.H. Chohan, Sains Malays., 49, 1891 (2020); https://doi.org/10.17576/jsm-2020-4908-11
- M. Asif, T. Azaz, B. Tiwari and M. Nasibullah, Tetrahedron, 134, 133308 (2023); https://doi.org/10.1016/j.tet.2023.133308
- M. Asif, S.S. Alvi, T. Azaz, A.R. Khan, B. Tiwari, B.B. Hafeez and M. Nasibullah, Int. J. Mol. Sci., 24, 7336 (2023); https://doi.org/10.3390/ijms24087336
- V.S.J. Reeda, V.B. Jothy, M. Asif, M. Nasibullah, S. Kadaikunnan, G. Abbas and S. Muthu, J. Mol. Struct., 1294, 136310 (2023); https://doi.org/10.1016/j.molstruc.2023.136310
- M. Amirmostofian, J.P. Jaktaji, Z. Soleimani, K. Tabib, F. Tanbakosazan, M. Omrani and F. Kobarfard, Iran. J. Pharm. Res., 12, 255 (2013).
- S. Nussbaumer, P. Bonnabry, J.-L. Veuthey and S. Fleury-Souverain, Talanta, 85, 2265 (2011); https://doi.org/10.1016/j.talanta.2011.08.034
- P. Dhokne, A.P. Sakla and N. Shankaraiah, Eur. J. Med. Chem., 216, 113334 (2021); https://doi.org/10.1016/j.ejmech.2021.113334
- P. Dey, A. Kundu, S.H. Han, K.-S. Kim, J.H. Park, S. Yoon, I.S. Kim and H.S. Kim, Biomolecules, 10, 1260 (2020); https://doi.org/10.3390/biom10091260
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta Jr., F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford (CT) (2013).
- R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission, Gaussview 6 (2016).
- R. Krishnan, J.S. Binkley, R. Seeger and J.A. Pople, J. Chem. Phys., 72, 650 (1980); https://doi.org/10.1063/1.438955
- M.H. Jamróz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
- M.P. Andersson and P. Uvdal, J. Phys. Chem. A, 109, 2937 (2005); https://doi.org/10.1021/jp045733a
- Chemcraft - Graphical Software for Visualization of Quantum Chemistry Computations, Version 1.8, build 682; https://www.chemcraftprog. com
- J.E. Carpenter and F. Weinhold, J. Mol. Struct. THEOCHEM, 169, 41 (1988); https://doi.org/10.1016/0166-1280(88)80248-3
- T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- D. Schneidman-Duhovny, Y. Inbar, R. Nussinov and H.J. Wolfson, Nucleic Acids Res., 33(Web Server), W363 (2005); https://doi.org/10.1093/nar/gki481
- Z. Gabelica, Spectrochim. Acta A, 32, 327 (1976); https://doi.org/10.1016/0584-8539(76)80085-2
- R.L. Pecsok, Modern Methods of Chemical Analysis, Wiley, edn. 2 (1976).
- P. Manikandan, M. Kumar, P. Swarnamughi, M. Asif, M. Nasibullah, V.S. Jeba Reeda, J.M. Khaled and S. Muthu, J. Mol. Liq., 405, 125064 (2024); https://doi.org/10.1016/j.molliq.2024.125064
- A. McIlroy and D.J. Nesbitt, J. Chem. Phys., 91, 104 (1989); https://doi.org/10.1063/1.457496
- L. Kahovec and K.W.F. Kohlrausch, Monatsh. Chem., 74, 333 (1941); https://doi.org/10.1007/BF01512909
- M. Orozco and F.J. Luque, Generalization of the Molecular Electrostatic Potential for the Study of Noncovalent interactions. In: Theoretical and Computational Chemistry, Elsevier, vol. 3, pp. 181–218 (1996).
- P. Manikandan, M. Kumar, S. Kaleeswaran, S. Chithra, P. Swarnamughi, M. Nikpassand and J.U. Prakash, J. Indian Chem. Soc., 102, 101657 (2025); https://doi.org/10.1016/j.jics.2025.101657
- J.P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980); https://doi.org/10.1021/ja00544a007
- K. Arulaabaranam, S. Muthu, G. Mani and A. Irfan, J. Mol. Liq., 341, 116934 (2021); https://doi.org/10.1016/j.molliq.2021.116934
- B. Silvi and A. Savin, Nature, 371, 683 (1994); https://doi.org/10.1038/371683a0
- V.S. Jeba Reeda, J.N. CheerlinMishma, P. Divya, A. Manikandan, R. Suja, M. Shahid, H. Arora, A. Ali, N. Siddiqui and S. Javed, Spectrosc. Lett., 0, 1 (2024); https://doi.org/10.1080/00387010.2024.2401990
- N. Elangovan, R. Sangeetha, S. Sowrirajan, S. Sarala and S. Muthu, Anal. Chem. Lett., 12, 58 (2022); https://doi.org/10.1080/22297928.2021.1933588
- T. Lu and Q. Chen, Chem. Methods, 1, 231 (2021); https://doi.org/10.1002/cmtd.202100007
- X.D. Divya Dexlin, J.D. Deephlin Tarika, M. Sethuram and T. Joselin Beaula, J. Mol. Liq., 351, 118687 (2022); https://doi.org/10.1016/j.molliq.2022.118687
- J.J. Kores, I.A. Danish, T. Sasitha, J.G. Stuart, E.J. Pushpam and J.W. Jebaraj, Heliyon, 7, e08377 (2021); https://doi.org/10.1016/j.heliyon.2021.e08377
- N. Issaoui, H. Ghalla, F. Bardak, M. Karabacak, N. Aouled Dlala, H.T. Flakus and B. Oujia, J. Mol. Struct., 1130, 659 (2017); https://doi.org/10.1016/j.molstruc.2016.11.019
- A.D. Isravel, J.K. Jeyaraj, S. Thangasamy and W.J. John, Comput. Theor. Chem., 1202, 113296 (2021); https://doi.org/10.1016/j.comptc.2021.113296
- D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, A.V. Rudik, D.S. Druzhilovskii, P.V. Pogodin and V.V. Poroikov, Chem. Heterocycl. Compd., 50, 444 (2014); https://doi.org/10.1007/s10593-014-1496-1
- G.N. Ramachandran and V. Sasisekharan, Conformation of Polypeptides and Proteins, In: Advances in Protein Chemistry, Elsevier, vol. 23, pp. 283–437 (1968).
- D.F. Veber, S.R. Johnson, H.-Y. Cheng, B.R. Smith, K.W. Ward and K.D. Kopple, J. Med. Chem., 45, 2615 (2002); https://doi.org/10.1021/jm020017n
- C.A. Lipinski, J. Pharmacol. Toxicol. Methods, 44, 235 (2000); https://doi.org/10.1016/S1056-8719(00)00107-6
- J.R. Proudfoot, Bioorg. Med. Chem. Lett., 12, 1647 (2002); https://doi.org/10.1016/S0960-894X(02)00244-5
- C. Zhang, G. Vasmatzis, J.L. Cornette and C. DeLisi, J. Mol. Biol., 267, 707 (1997); https://doi.org/10.1006/jmbi.1996.0859
- H.M. Berman, T. Battistuz, W.F. Bluhm, P.E. Bourne, K. Burkhardt, T.N. Bhat, Z. Feng, G.L. Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J.D. Westbrook and C. Zardecki, Acta Cryst., D58, 899 (2002); https://doi.org/10.1107/S0907444902003451
- M. Asif, M. Saquib, A. Rahman Khan, F. Aqil, A. salem Almalki, F. Ali Alasmary, J. Singh and M. Nasibullah, ChemistrySelect, 8, e202204536 (2023); https://doi.org/10.1002/slct.202204536
References
K.N. Venugopala, M. Kandeel, M. Pillay, P.K. Deb, H.H. Abdallah, M.F. Mahomoodally and D. Chopra, Antibiotics, 9, 559 (2020); https://doi.org/10.3390/antibiotics9090559
M. Asif, F. Aqil, F.A. Alasmary, A. almalki, A.R. Khan and M. Nasibullah, Med. Chem. Res., 32, 1001 (2023); https://doi.org/10.1007/s00044-023-03053-7
S. Khalid, S.H. Sumrra and Z.H. Chohan, Sains Malays., 49, 1891 (2020); https://doi.org/10.17576/jsm-2020-4908-11
M. Asif, T. Azaz, B. Tiwari and M. Nasibullah, Tetrahedron, 134, 133308 (2023); https://doi.org/10.1016/j.tet.2023.133308
M. Asif, S.S. Alvi, T. Azaz, A.R. Khan, B. Tiwari, B.B. Hafeez and M. Nasibullah, Int. J. Mol. Sci., 24, 7336 (2023); https://doi.org/10.3390/ijms24087336
V.S.J. Reeda, V.B. Jothy, M. Asif, M. Nasibullah, S. Kadaikunnan, G. Abbas and S. Muthu, J. Mol. Struct., 1294, 136310 (2023); https://doi.org/10.1016/j.molstruc.2023.136310
M. Amirmostofian, J.P. Jaktaji, Z. Soleimani, K. Tabib, F. Tanbakosazan, M. Omrani and F. Kobarfard, Iran. J. Pharm. Res., 12, 255 (2013).
S. Nussbaumer, P. Bonnabry, J.-L. Veuthey and S. Fleury-Souverain, Talanta, 85, 2265 (2011); https://doi.org/10.1016/j.talanta.2011.08.034
P. Dhokne, A.P. Sakla and N. Shankaraiah, Eur. J. Med. Chem., 216, 113334 (2021); https://doi.org/10.1016/j.ejmech.2021.113334
P. Dey, A. Kundu, S.H. Han, K.-S. Kim, J.H. Park, S. Yoon, I.S. Kim and H.S. Kim, Biomolecules, 10, 1260 (2020); https://doi.org/10.3390/biom10091260
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta Jr., F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford (CT) (2013).
R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission, Gaussview 6 (2016).
R. Krishnan, J.S. Binkley, R. Seeger and J.A. Pople, J. Chem. Phys., 72, 650 (1980); https://doi.org/10.1063/1.438955
M.H. Jamróz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
M.P. Andersson and P. Uvdal, J. Phys. Chem. A, 109, 2937 (2005); https://doi.org/10.1021/jp045733a
Chemcraft - Graphical Software for Visualization of Quantum Chemistry Computations, Version 1.8, build 682; https://www.chemcraftprog. com
J.E. Carpenter and F. Weinhold, J. Mol. Struct. THEOCHEM, 169, 41 (1988); https://doi.org/10.1016/0166-1280(88)80248-3
T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
D. Schneidman-Duhovny, Y. Inbar, R. Nussinov and H.J. Wolfson, Nucleic Acids Res., 33(Web Server), W363 (2005); https://doi.org/10.1093/nar/gki481
Z. Gabelica, Spectrochim. Acta A, 32, 327 (1976); https://doi.org/10.1016/0584-8539(76)80085-2
R.L. Pecsok, Modern Methods of Chemical Analysis, Wiley, edn. 2 (1976).
P. Manikandan, M. Kumar, P. Swarnamughi, M. Asif, M. Nasibullah, V.S. Jeba Reeda, J.M. Khaled and S. Muthu, J. Mol. Liq., 405, 125064 (2024); https://doi.org/10.1016/j.molliq.2024.125064
A. McIlroy and D.J. Nesbitt, J. Chem. Phys., 91, 104 (1989); https://doi.org/10.1063/1.457496
L. Kahovec and K.W.F. Kohlrausch, Monatsh. Chem., 74, 333 (1941); https://doi.org/10.1007/BF01512909
M. Orozco and F.J. Luque, Generalization of the Molecular Electrostatic Potential for the Study of Noncovalent interactions. In: Theoretical and Computational Chemistry, Elsevier, vol. 3, pp. 181–218 (1996).
P. Manikandan, M. Kumar, S. Kaleeswaran, S. Chithra, P. Swarnamughi, M. Nikpassand and J.U. Prakash, J. Indian Chem. Soc., 102, 101657 (2025); https://doi.org/10.1016/j.jics.2025.101657
J.P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980); https://doi.org/10.1021/ja00544a007
K. Arulaabaranam, S. Muthu, G. Mani and A. Irfan, J. Mol. Liq., 341, 116934 (2021); https://doi.org/10.1016/j.molliq.2021.116934
B. Silvi and A. Savin, Nature, 371, 683 (1994); https://doi.org/10.1038/371683a0
V.S. Jeba Reeda, J.N. CheerlinMishma, P. Divya, A. Manikandan, R. Suja, M. Shahid, H. Arora, A. Ali, N. Siddiqui and S. Javed, Spectrosc. Lett., 0, 1 (2024); https://doi.org/10.1080/00387010.2024.2401990
N. Elangovan, R. Sangeetha, S. Sowrirajan, S. Sarala and S. Muthu, Anal. Chem. Lett., 12, 58 (2022); https://doi.org/10.1080/22297928.2021.1933588
T. Lu and Q. Chen, Chem. Methods, 1, 231 (2021); https://doi.org/10.1002/cmtd.202100007
X.D. Divya Dexlin, J.D. Deephlin Tarika, M. Sethuram and T. Joselin Beaula, J. Mol. Liq., 351, 118687 (2022); https://doi.org/10.1016/j.molliq.2022.118687
J.J. Kores, I.A. Danish, T. Sasitha, J.G. Stuart, E.J. Pushpam and J.W. Jebaraj, Heliyon, 7, e08377 (2021); https://doi.org/10.1016/j.heliyon.2021.e08377
N. Issaoui, H. Ghalla, F. Bardak, M. Karabacak, N. Aouled Dlala, H.T. Flakus and B. Oujia, J. Mol. Struct., 1130, 659 (2017); https://doi.org/10.1016/j.molstruc.2016.11.019
A.D. Isravel, J.K. Jeyaraj, S. Thangasamy and W.J. John, Comput. Theor. Chem., 1202, 113296 (2021); https://doi.org/10.1016/j.comptc.2021.113296
D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, A.V. Rudik, D.S. Druzhilovskii, P.V. Pogodin and V.V. Poroikov, Chem. Heterocycl. Compd., 50, 444 (2014); https://doi.org/10.1007/s10593-014-1496-1
G.N. Ramachandran and V. Sasisekharan, Conformation of Polypeptides and Proteins, In: Advances in Protein Chemistry, Elsevier, vol. 23, pp. 283–437 (1968).
D.F. Veber, S.R. Johnson, H.-Y. Cheng, B.R. Smith, K.W. Ward and K.D. Kopple, J. Med. Chem., 45, 2615 (2002); https://doi.org/10.1021/jm020017n
C.A. Lipinski, J. Pharmacol. Toxicol. Methods, 44, 235 (2000); https://doi.org/10.1016/S1056-8719(00)00107-6
J.R. Proudfoot, Bioorg. Med. Chem. Lett., 12, 1647 (2002); https://doi.org/10.1016/S0960-894X(02)00244-5
C. Zhang, G. Vasmatzis, J.L. Cornette and C. DeLisi, J. Mol. Biol., 267, 707 (1997); https://doi.org/10.1006/jmbi.1996.0859
H.M. Berman, T. Battistuz, W.F. Bluhm, P.E. Bourne, K. Burkhardt, T.N. Bhat, Z. Feng, G.L. Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J.D. Westbrook and C. Zardecki, Acta Cryst., D58, 899 (2002); https://doi.org/10.1107/S0907444902003451
M. Asif, M. Saquib, A. Rahman Khan, F. Aqil, A. salem Almalki, F. Ali Alasmary, J. Singh and M. Nasibullah, ChemistrySelect, 8, e202204536 (2023); https://doi.org/10.1002/slct.202204536