Copyright (c) 2025 Adlin Asha V, Pooja S R, Jebha Starling P, Johnsy Rose J, Rathidevi J, Jose P

This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis of Copper Nanoparticles, Characterization, Recent Progress and Applications: An Overview
Corresponding Author(s) : V. Adlin Asha
Asian Journal of Chemistry,
Vol. 37 No. 12 (2025): Vol 37 Issue 12, 2025
Abstract
Sustainable and environmentally friendly nanomaterials are in greater demand, which has sparked interest in green synthesis of metal nanoparticles. In recent years, copper nanoparticles (CuNPs) have emerged as promising materials owing to their outstanding physico-chemical and biological attributes and economic viability. To promote safer and more sustainable synthesis approaches, green synthesis methods have been developed using plant extracts and other biological resources as natural reducing and capping agents. The structural and morphological characteristics of the synthesized CuNPs are generally analyzed with various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet–visible (UV-Vis) spectroscopy. The wide range of uses of copper nanoparticles is also covered in this review, with special attention paid to their antibacterial, antifungal, antiviral and anticancer activity. Standardizing green synthesis procedures and increasing production while preserving the stability, homogeneity and reproducibility of nanoparticles is a crucial research need, despite the fact that numerous studies have shown. Future studies should also look into long-term environmental effects and synergistic processes in biomedical applications. By encompassing these perspectives, the present review aims to offer an in-depth understanding of green synthesis strategies for CuNPs and their role in fostering sustainable nanotechnological innovations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Abbasi, K. Ghorban, F. Nojoomi and M. Dadmanesh, Asian Pac. J. Cancer Prev., 22, 893 (2021); https://doi.org/10.31557/APJCP.2021.22.3.893
- N. Nagar and V. Devra, Mater. Chem. Phys., 213, 44 (2018); https://doi.org/10.1016/j.matchemphys.2018.04.007
- A. Curcio, A. Van de Walle, C. Péchoux, A. Abou-Hassan and C. Wilhelm, Pharmaceutics, 14, 179 (2022); https://doi.org/10.3390/pharmaceutics14010179
- S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani and F. Rizzolio, Molecules, 25, 112 (2019); https://doi.org/10.3390/molecules25010112
- V. Chandrakala, V. Aruna and G. Angajala, Emergent Mater., 5, 1593 (2022); https://doi.org/10.1007/s42247-021-00335-x
- J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne and M.K. Danquah, Beilstein J. Nanotechnol., 9, 1050 (2018); https://doi.org/10.3762/bjnano.9.98
- C. Buzea and I. Pacheco, in eds.: M. Ghorbanpour, K. Manika and A. Varma, Nanomaterial and Nanoparticle: Origin and Activity, In: Nanoscience and Plant–Soil Systems, Cham: Springer International Publishing, pp. 71–112 (2017).
- H.L. Kagdada, A.K. Bhojani and D.K. Singh, in eds.: D.K. Singh, S. Singh and P. Singh, An Overview of Nanomaterials: History, Fundamentals and Applications, In: Nanomaterials: Advances and Applications, Singapore: Springer Nature, pp. 1–26 (2023).
- E.N. Gecer, R. Erenler, C. Temiz, N. Genc and I. Yildiz, Particul. Sci. Technol., 40, 50 (2022); https://doi.org/10.1080/02726351.2021.1904309
- L. Leon, E.J. Chung and C. Rinaldi, A Brief History of Nano-technology and Introduction to Nanoparticles for Biomedical Applications, In: Nanoparticles for Biomedical Applications, Elsevier, pp. 1–4 (2020).
- B.A. Abbasi, J. Iqbal, J.A. Nasir, S.A. Zahra, A. Shahbaz, S. Uddin, S. Hameed, F. Gul, S. Kanwal and T. Mahmood, Microsc. Res. Tech., 83, 1308 (2020); https://doi.org/10.1002/jemt.23522
- M. Rafique, M.B. Tahir, M.S. Rafique and M. Hamza, in eds.: M.B. Tahir, M. Rafique and M. S. Rafique, History and Fundamentals of Nanoscience and Nanotechnology, In: Nanotechnology and Photocatalysis for Environmental Applications in Micro and Nano Technologies., Elsevier, Chap. 1, pp. 1–25 (2020).
- N. Chakraborty, J. Banerjee, P. Chakraborty, A. Banerjee, S. Chanda, K. Ray, K. Acharya and J. Sarkar, Green Chem. Lett. Rev., 15, 187 (2022); https://doi.org/10.1080/17518253.2022.2025916
- A.M.E. Shafey, Green Process. Synth., 9, 304 (2020); https://doi.org/10.1515/gps-2020-0031
- S. Naz, A. Gul and M. Zia, IET Nanobiotechnol., 14, 1 (2019); https://doi.org/10.1049/iet-nbt.2019.0176
- X. Ma, S. Zhou, X. Xu and Q. Du, Front Surg., 5, 905892 (2022); https://doi.org/10.3389/fsurg.2022.905892
- K. Dulta, G.K. Ağçeli, P. Chauhan, R. Jasrotia, P.K. Chauhan and J.O. Ighalo, Sustain. Environ. Res., 32, 2 (2022); https://doi.org/10.1186/s42834-021-00111-w
- I. Ijaz, E. Gilani, A. Nazir and A. Bukhari, Green Chem. Lett. Rev., 13, 223 (2020); https://doi.org/10.1080/17518253.2020.1802517
- C. Wang, W. Tian, Y. Ding, Y. Ma, Z.L. Wang, N.M. Markovic, V.R. Stamenkovic, H. Daimon and S. Sun, J. Am. Chem. Soc., 132, 6524 (2010); https://doi.org/10.1021/ja101305x
- P.K. Tyagi, A. Kumar, A. Mazumder and S. Tyagi, Precis. Nanomed., 6, 1048 (2023); https://doi.org/10.33218/001c.83932
- M.C. Crisan, M. Teodora and M. Lucian, Appl. Sci., 12, 141 (2022); https://doi.org/10.3390/app12010141
- M. Kushwaha, S. Shankar, D. Goel, S. Singh, J. Rahul, K. Rachna and J. Singh, Mar. Pollut. Bull., 209, 117109 (2024); https://doi.org/10.1016/j.marpolbul.2024.117109
- X. Zhang, Y. Li, D. Ouyang, J. Lei, Q. Tan, L. Xie, Z. Li, T. Liu, Y. Xiao, T.H. Farooq, X. Wu, L. Chen and W. Yan, J. Hazard. Mater., 418, 126288 (2021); https://doi.org/10.1016/j.jhazmat.2021.126288
- M. Nasrollahzadeh, S.M. Sajadi and M. Maham, J. Mol. Catal. Chem., 396, 297 (2015); https://doi.org/10.1016/j.molcata.2014.10.019
- G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip and R.P. Allaker, Int. J. Antimicrob. Agents, 33, 587 (2009); https://doi.org/10.1016/j.ijantimicag.2008.12.004
- O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez and V.M.J. Pérez, Trends Biotechnol., 31, 240 (2013); https://doi.org/10.1016/j.tibtech.2013.01.003
- K.B. Narayanan and N. Sakthivel, Adv. Colloid Interface Sci., 156, 1 (2010); https://doi.org/10.1016/j.cis.2010.02.001
- J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong and C. Chen, Nanotechnology, 18, 105104 (2007); https://doi.org/10.1088/0957-4484/18/10/105104
- H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S. Pyne and A. Misra, Colloids Surf. A Physicochem. Eng. Asp., 348, 212 (2009); https://doi.org/10.1016/j.colsurfa.2009.07.021
- B. Graca, A. Zgrundo, D. Zakrzewska, M. Rzodkiewicz and J. Karczewski, Curr. Sci., 85, 162 (2003); https://doi.org/10.1016/j.chemosphere.2018.05.022
- S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
- V.K. Sharma, R.A. Yngard and Y. Lin, Adv. Colloid Interface Sci., 145, 83 (2009); https://doi.org/10.1016/j.cis.2008.09.002
- T.J. Jeetkar, S.P. Khataokar, A.R. Indurkar, A. Pandit and M.S. Nimbalkar, Adv. Nat. Sci. Nanosci. Nanotechnol., 13, 033004 (2022); https://doi.org/10.1088/2043-6262/ac865d
- P. Kuppusamy, M.M. Yusoff, G.P. Maniam and N. Govindan, Saudi Pharm. J., 24, 473 (2016); https://doi.org/10.1016/j.jsps.2014.11.013
- R.A. Banjara, A. Kumar, R.K. Aneshwari, M.L. Satnami and S.K. Sinha, Environ. Nanotechnol. Monit. Manag., 22, 100988 (2024); https://doi.org/10.1016/j.enmm.2024.100988
- S. Panigrahi, S. Kundu, S. Ghosh, S. Nath and T. Pal, J. Nanopart. Res., 6, 411 (2004); https://doi.org/10.1007/s11051-004-6575-2
- M. Mohammadi Dargah, P. Pedram, G. Cabrera-Barjas, C. Delattre, A. Nesic, G. Santagata, P. Cerruti and A. Moeini, Adv. Colloid Interface Sci., 332, 103277 (2024); https://doi.org/10.1016/j.cis.2024.103277
- N. El Messaoudi, S. Boukhris, A. El Messaoudi, A. Kumar, M. Bilal, and L.F.R. Ferreira, in eds.: A. Kumar, M. Bilal and L.F.R. Ferreira, Green Synthesis of Nanoparticles for Remediation Organic Pollutants in Wastewater By Adsorption; In: Advances in Chemical Pollution, Environmental Management and Protection, Elsevier, vol. 10, Chap. 14, pp. 305–345 (2024).
- M.K. Sah, B.S. Thakuri, J. Pant, R.L. Gardas and A. Bhattarai, Sustain. Chem., 5, 40 (2024); https://doi.org/10.3390/suschem5020004
- M. Pourmadadi, R. Holghoomi, A. shamsabadipour, R. Maleki-baladi, A. Rahdar and S. Pandey, Plant Nano Biol., 8, 100070 (2024); https://doi.org/10.1016/j.plana.2024.100070
- O.V. Mikhailov and E.O. Mikhailova, Materials, 12, 3177 (2019); https://doi.org/10.3390/ma12193177
- A.K. Mittal, Y. Chisti and U.C. Banerjee, Biotechnol. Adv., 31, 346 (2013); https://doi.org/10.1016/j.biotechadv.2013.01.003
- J. Kesharwani, K.Y. Yoon, J. Hwang and M. Rai, J. Bionanoscience, 3, 39 (2009); https://doi.org/10.1166/jbns.2009.1008
- V. Khanna, S. Singh, K. Sudhakar, D.S. Baghel, B. Kumar, S. Wadhawa and N.K. Pandey, Rasayan J. Chem., 17, 957 (2024); https://doi.org/10.31788/RJC.2024.1738801
- S.C. Mali, A. Dhaka, C.K. Githala and R. Trivedi, Biotechnol. Rep., 27, e00518 (2020); https://doi.org/10.1016/j.btre.2020.e00518
- H.N. Jayasimha, K.G. Chandrappa, P.F. Sanaulla and V.G. Dileepkumar, Sens. Int., 5, 100254 (2024); https://doi.org/10.1016/j.sintl.2023.100254
- A. Halfadji, M. Naous, S. Rajendrachari, Y. Ceylan, K.B. Ceylan and P.V.R. Shekar, J. Mol. Struct., 1301, 137318 (2024); https://doi.org/10.1016/j.molstruc.2023.137318
- B. Kumar, K. Smita, L. Cumbal, A. Debut and Y. Angulo, J. Saudi Chem. Soc., 21, S475 (2017); https://doi.org/10.1016/j.jscs.2015.01.009
- S. Wu, S. Rajeshkumar, M. Madasamy and V. Mahendran, Artif. Cells Nanomed. Biotechnol., 48, 1153 (2020); https://doi.org/10.1080/21691401.2020.1817053
- H.R. Aher, S. Vikhe, A. Han and S.R. Kuchekar, Chem. Sci. Trans., 8, 1 (2019).
- M.D. Moroda, T. Leta Deressa, A.H. Tiwikrama and T.F. Chala, Mater., 7, 100337 (2025); https://doi.org/10.1016/j.nxmate.2024.100337
- A.N. Labaran, Z.U. Zango, G. Tailor, A. Alsadig, F. Usman, M.T. Mukhtar, A.M. Garba, R. Alhathlool, K.H. Ibnaouf and O.A. Aldaghri, Sci. Rep., 14, 5589 (2024); https://doi.org/10.1038/s41598-024-56052-y
- M.K. Ghosh, S. Sahu, I. Gupta and T.K. Ghorai, RSC Advances, 10, 22027 (2020); https://doi.org/10.1039/D0RA03186K
- S. Idrees, B.A. Abbasi, J. Iqbal and M. Kazi, Heliyon, 11, e41397 (2025); https://doi.org/10.1016/j.heliyon.2024.e41397
- I. Chung, A. Abdul Rahuman, S. Marimuthu, A. Vishnu Kirthi, K. Anbarasan, P. Padmini and G. Rajakumar, Exp. Ther. Med., (2017); https://doi.org/10.3892/etm.2017.4466
- B. Graca, A. Zgrundo, D. Zakrzewska, M. Rzodkiewicz and J. Karczewski, Chemtech, 9, 498 (2018); https://doi.org/10.1016/j.chemosphere.2018.05.022
- N. Padma, S. Banu and S. Kumari, Annu. Res. Rev. Biol., 23, 1 (2018); https://doi.org/10.9734/ARRB/2018/38894
- E.C. Okpara, O.E. Ogunjinmi, O.A. Oyewo, O.E. Fayemi and D.C. Onwudiwe, Heliyon, 7, e08571 (2021); https://doi.org/10.1016/j.heliyon.2021.e08571
- M. Akl Awaad, ResearchGate, 7, 1 (2025); https://doi.org/10.5281/zenodo.4017993
- M.J. Javid-Naderi, Z. Sabouri, A. Jalili, H. Zarrinfar, S. Samarghandian and M. Darroudi, Environ. Technol. Innov., 32, 103300 (2023); https://doi.org/10.1016/j.eti.2023.103300
- S. Dhir, R. Dutt, R.P. Singh, M. Chauhan, T. Virmani, G. Kumar, A. Alhalmi, M.S. Aleissa, H.A. Rudayni and M. Al-Zahrani, Processes (Basel), 11, 2698 (2023); https://doi.org/10.3390/pr11092698
- K. Bhardwaj, C. Chopra, P. Bhardwaj, D.S. Dhanjal, R. Singh, A. Najda, N. Cruz-Martins, S. Singh, R. Sharma, K. Kuča and S. Manickam, J. Nanotechnol., 2022, 2271278 (2022); https://doi.org/10.1155/2022/2271278
- S. Sukumar, A. Rudrasenan and D. Padmanabhan Nambiar, ACS Omega, 5, 1040 (2020); https://doi.org/10.1021/acsomega.9b02857
- M. Kumar, D. Kaushik, A. Kumar, P. Gupta, C. Proestos, E. Oz, E. Orhan, J. Kaur, M.R. Khan, T. Elobeid, M. Bordiga and F. Oz, Int. J. Food Sci. Technol., 58, 2883 (2023); https://doi.org/10.1111/ijfs.16359
- F.M. Ibrahim, D.A. Najeeb and H. ThamerSadeq, Mater. Sci. Energy Technol., 6, 130 (2023); https://doi.org/10.1016/j.mset.2022.12.006
- H. Majeed, K. Ahmad, S. Bibi, T. Iftikhar, M.M. Ibrahim, T. Ruby, G.A.M. Mersal, Z.M. El-Bahy, K. Qureshi, M. Arif, K. Naseem, S. Shaheen and H.N. Bhatti, Heliyon, 10, e30927 (2024); https://doi.org/10.1016/j.heliyon.2024.e30927
- D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley and D.G. Fernig, Analyst (Lond.), 139, 4855 (2014); https://doi.org/10.1039/C4AN00978A
- N. Kulkarni and U. Muddapur, J. Nanotechnol., 2014, 510246 (2014); https://doi.org/10.1155/2014/510246
- J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta and S. Mukherji, Acta Biomater., 4, 707 (2008); https://doi.org/10.1016/j.actbio.2007.11.006
- T. Kruk, K. Szczepanowicz, J. Stefańska, R.P. Socha and P. Warszyński, Colloids Surf. B Biointerfaces, 128, 17 (2015); https://doi.org/10.1016/j.colsurfb.2015.02.009
- N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P.G. Zambonin and E. Traversa, Chem. Mater., 17, 5255 (2005); https://doi.org/10.1021/cm0505244
- A. Jafari, L. Pourakbar, K. Farhadi, L. Mohamadgolizad and Y. Goosta,, Turk. J. Biol., 39, 556 (2015); https://doi.org/10.3906/biy-1406-81
- M.X. Zhang, F. Verhoeven, P. Ravensbergen, S. Kooij, R. Geoffrion, D. Bonn and C.J.M. van Rijn, Pharmaceuticals, 16, 2 (2023); https://doi.org/10.3390/pharmaceutics16010002
- R. Sankar, R. Maheswari, S. Karthik, K.S. Shivashangari and V. Ravikumar, Mater. Sci. Eng. C, 44, 234 (2014); https://doi.org/10.1016/j.msec.2014.08.030
- M. Pourmadadi, R. Holghoomi, A. Shamsabadipour, R. Maleki-baladi, A. Rahdar and S. Pandey, Plant Nano Biol., 8, 100070 (2024); https://doi.org/10.1016/j.plana.2024.100070
- M.J. Woźniak-Budych, K. Staszak and M. Staszak, Molecules, 28, 6687 (2023); https://doi.org/10.3390/molecules28186687
- D. Xu, E. Li, B. Karmakar, N.S. Awwad, H.A. Ibrahium, H.-E.H. Osman, A.F. El-kott and M.M. Abdel-Daim, Arab. J. Chem., 15, 103638 (2022); https://doi.org/10.1016/j.arabjc.2021.103638
- Z. Edis, S. Haj Bloukh, A. Ashames and M. Ibrahim, in eds.: P. Ramasami, M. Gupta Bhowon, S. Jhaumeer Laulloo, and H. Li Kam Wah, Copper-Based Nanoparticles, Their Chemistry and Antibacterial Properties: A Review. In: Chemistry for a Clean and Healthy Planet. ICPAC 2018. Springer, Cham (2019).
- M. Maliki, I.H. Ifijen, E.U. Ikhuoria, E.M. Jonathan, G.E. Onaiwu, U.D. Archibong and A. Ighodaro, Int. Nano Lett., 12, 379 (2022); https://doi.org/10.1007/s40089-022-00380-2
- P. Ghasemi, G. Shafiee, N. Ziamajidi and R. Abbasalipourkabir, Biol. Trace Elem. Res., 201, 3746 (2023); https://doi.org/10.1007/s12011-022-03458-2
- P. Ponmurugan, K. Manjukarunambika, V. Elango and B.M. Gnanamangai, J. Exp. Nanosci., 11, 1019 (2016); https://doi.org/10.1080/17458080.2016.1184766
- M. Selvarani, Int. J. Pharm. Pharmaceut. Sci., 10, 83 (2018).
- P. Kanhed, S. Birla, S. Gaikwad, A. Gade, A.B. Seabra, O. Rubilar, N. Duran and M. Rai, Mater. Lett., 115, 13 (2014); https://doi.org/10.1016/j.matlet.2013.10.011
- A.G. Krishna, S. Sahana, H. Venkatesan and V. Arul, J. Egypt. Natl. Canc. Inst., 36, 44 (2024); https://doi.org/10.1186/s43046-024-00254-y
- Y. Wei, S. Chen, B. Kowalczyk, S. Huda, T.P. Gray and B.A. Grzybowski, J. Phys. Chem. C, 114, 15612 (2010); https://doi.org/10.1021/jp1055683
- W. Huang, H. Fang, S. Zhang and H. Yu, Micro & Nano Lett., 16, 374 (2021); https://doi.org/10.1049/mna2.12060
- N.-D. Pham, M.-M. Duong, M.-V. Le, H.A. Hoang and L.-K.-O. Pham, C. R. Chim., 22, 786 (2019); https://doi.org/10.1016/j.crci.2019.10.007
- M. Zhou, M. Tian and C. Li, Bioconjugate Chem., 27, 1188 (2016); https://doi.org/10.1021/acs.bioconjchem.6b00156
- F. Qi, Y. Chang, R. Zheng, X. Wu, Y. Wu, B. Li, T. Sun, P. Wang, H. Zhang and H. Zhang, ACS Biomater. Sci. Eng., 7, 2745 (2021); https://doi.org/10.1021/acsbiomaterials.1c00189
- M.F. Al-Hakkani, SN Appl. Sci., 2, 505 (2020); https://doi.org/10.1007/s42452-020-2279-1
- M.J. Woźniak-Budych, K. Staszak and M. Staszak, Molecules, 28, 6687 (2023); https://doi.org/10.3390/molecules28186687
- M. Al-zharani, A.A. Qurtam, W.M. Daoush, M.H. Eisa, N.H. Aljarba, S. Alkahtani and F.A. Nasr, Environ. Sci. Pollut. Res., 28, 1587 (2021); https://doi.org/10. 1007/s11356-020-09843-5
- M.C. Crisan, M. Teodora and M. Lucian, Appl. Sci., 12, 141 (2022); https://doi.org/10.3390/app12010141
- A.R.M. Al-Qaissi, S.H. Fouzi and A.J. Al-Baytay, IOP Conf. Ser. Earth Environ. Sci., 1214, 012010 (2023); https://doi.org/10.1088/1755-1315/1214/1/012010
- A. Martínez, C. Apip, M.F. Meléndrez, M. Domínguez, G. Sánchez-Sanhueza, T. Marzialetti and A. Catalán, J. Appl. Microbiol., 130, 1883 (2021); https://doi.org/10.1111/jam.14859
- K.A. Mosa, M. El-Naggar, K. Ramamoorthy, H. Alawadhi, A. Elnaggar, S. Wartanian, E. Ibrahim and H. Hani, Front. Plant Sci., 9, 872 (2018); https://doi.org/10.3389/fpls.2018.00872
- D. Devipriya and S.M. Roopan, Mater. Sci. Eng. C, 80, 38 (2017); https://doi.org/10.1016/j.msec.2017.05.130
- S.E.-D. Hassan, S.S. Salem, A. Fouda, M.A. Awad, M.S. El-Gamal and A.M. Abdo, J. Radiat. Res. Appl. Sci., 11, 262 (2018); https://doi.org/10.1016/j.jrras.2018.05.003
- S.Y. Ramy and F.A. Osama, Afr. J. Microbiol. Res., 7, 1917 (2013).
- A.P. Ingle and M. Rai, IET Nanobiotechnol., 11, 546 (2017); https://doi.org/10.1049/iet-nbt.2016.0170
- J.O. Ighalo, P.A. Sagboye, G. Umenweke, O.J. Ajala, F.O. Omoarukhe, C.A. Adeyanju, S. Ogunniyi and A.G. Adeniyi, Environ. Nanotechnol., Monit. Manag., 15, 100443 (2021); https://doi.org/10.1016/j.enmm.2021.100443
- S. Bonthula, S.R. Bonthula, R. Pothu, R.K. Srivastava, R. Boddula, A.B. Radwan and N. Al-Qahtani, Sustain. Chem., 4, 246 (2023); https://doi.org/10.3390/suschem4030019
- A. El Din Mahmoud, K.M. Al-Qahtani, S.O. Alflaij, S.F. Al-Qahtani and F.A. Alsamhan, Sci. Rep., 11, 12547 (2021); https://doi.org/10.1038/s41598-021-91093-7
- L. Dorjee, R. Gogoi, D. Kamil, R. Kumar, T.K. Mondal, S. Pattanayak and B. Gurung, Front. Microbiol., 14, 1204512 (2023); https://doi.org/10.3389/fmicb.2023.1204512
References
A. Abbasi, K. Ghorban, F. Nojoomi and M. Dadmanesh, Asian Pac. J. Cancer Prev., 22, 893 (2021); https://doi.org/10.31557/APJCP.2021.22.3.893
N. Nagar and V. Devra, Mater. Chem. Phys., 213, 44 (2018); https://doi.org/10.1016/j.matchemphys.2018.04.007
A. Curcio, A. Van de Walle, C. Péchoux, A. Abou-Hassan and C. Wilhelm, Pharmaceutics, 14, 179 (2022); https://doi.org/10.3390/pharmaceutics14010179
S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani and F. Rizzolio, Molecules, 25, 112 (2019); https://doi.org/10.3390/molecules25010112
V. Chandrakala, V. Aruna and G. Angajala, Emergent Mater., 5, 1593 (2022); https://doi.org/10.1007/s42247-021-00335-x
J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne and M.K. Danquah, Beilstein J. Nanotechnol., 9, 1050 (2018); https://doi.org/10.3762/bjnano.9.98
C. Buzea and I. Pacheco, in eds.: M. Ghorbanpour, K. Manika and A. Varma, Nanomaterial and Nanoparticle: Origin and Activity, In: Nanoscience and Plant–Soil Systems, Cham: Springer International Publishing, pp. 71–112 (2017).
H.L. Kagdada, A.K. Bhojani and D.K. Singh, in eds.: D.K. Singh, S. Singh and P. Singh, An Overview of Nanomaterials: History, Fundamentals and Applications, In: Nanomaterials: Advances and Applications, Singapore: Springer Nature, pp. 1–26 (2023).
E.N. Gecer, R. Erenler, C. Temiz, N. Genc and I. Yildiz, Particul. Sci. Technol., 40, 50 (2022); https://doi.org/10.1080/02726351.2021.1904309
L. Leon, E.J. Chung and C. Rinaldi, A Brief History of Nano-technology and Introduction to Nanoparticles for Biomedical Applications, In: Nanoparticles for Biomedical Applications, Elsevier, pp. 1–4 (2020).
B.A. Abbasi, J. Iqbal, J.A. Nasir, S.A. Zahra, A. Shahbaz, S. Uddin, S. Hameed, F. Gul, S. Kanwal and T. Mahmood, Microsc. Res. Tech., 83, 1308 (2020); https://doi.org/10.1002/jemt.23522
M. Rafique, M.B. Tahir, M.S. Rafique and M. Hamza, in eds.: M.B. Tahir, M. Rafique and M. S. Rafique, History and Fundamentals of Nanoscience and Nanotechnology, In: Nanotechnology and Photocatalysis for Environmental Applications in Micro and Nano Technologies., Elsevier, Chap. 1, pp. 1–25 (2020).
N. Chakraborty, J. Banerjee, P. Chakraborty, A. Banerjee, S. Chanda, K. Ray, K. Acharya and J. Sarkar, Green Chem. Lett. Rev., 15, 187 (2022); https://doi.org/10.1080/17518253.2022.2025916
A.M.E. Shafey, Green Process. Synth., 9, 304 (2020); https://doi.org/10.1515/gps-2020-0031
S. Naz, A. Gul and M. Zia, IET Nanobiotechnol., 14, 1 (2019); https://doi.org/10.1049/iet-nbt.2019.0176
X. Ma, S. Zhou, X. Xu and Q. Du, Front Surg., 5, 905892 (2022); https://doi.org/10.3389/fsurg.2022.905892
K. Dulta, G.K. Ağçeli, P. Chauhan, R. Jasrotia, P.K. Chauhan and J.O. Ighalo, Sustain. Environ. Res., 32, 2 (2022); https://doi.org/10.1186/s42834-021-00111-w
I. Ijaz, E. Gilani, A. Nazir and A. Bukhari, Green Chem. Lett. Rev., 13, 223 (2020); https://doi.org/10.1080/17518253.2020.1802517
C. Wang, W. Tian, Y. Ding, Y. Ma, Z.L. Wang, N.M. Markovic, V.R. Stamenkovic, H. Daimon and S. Sun, J. Am. Chem. Soc., 132, 6524 (2010); https://doi.org/10.1021/ja101305x
P.K. Tyagi, A. Kumar, A. Mazumder and S. Tyagi, Precis. Nanomed., 6, 1048 (2023); https://doi.org/10.33218/001c.83932
M.C. Crisan, M. Teodora and M. Lucian, Appl. Sci., 12, 141 (2022); https://doi.org/10.3390/app12010141
M. Kushwaha, S. Shankar, D. Goel, S. Singh, J. Rahul, K. Rachna and J. Singh, Mar. Pollut. Bull., 209, 117109 (2024); https://doi.org/10.1016/j.marpolbul.2024.117109
X. Zhang, Y. Li, D. Ouyang, J. Lei, Q. Tan, L. Xie, Z. Li, T. Liu, Y. Xiao, T.H. Farooq, X. Wu, L. Chen and W. Yan, J. Hazard. Mater., 418, 126288 (2021); https://doi.org/10.1016/j.jhazmat.2021.126288
M. Nasrollahzadeh, S.M. Sajadi and M. Maham, J. Mol. Catal. Chem., 396, 297 (2015); https://doi.org/10.1016/j.molcata.2014.10.019
G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip and R.P. Allaker, Int. J. Antimicrob. Agents, 33, 587 (2009); https://doi.org/10.1016/j.ijantimicag.2008.12.004
O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez and V.M.J. Pérez, Trends Biotechnol., 31, 240 (2013); https://doi.org/10.1016/j.tibtech.2013.01.003
K.B. Narayanan and N. Sakthivel, Adv. Colloid Interface Sci., 156, 1 (2010); https://doi.org/10.1016/j.cis.2010.02.001
J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong and C. Chen, Nanotechnology, 18, 105104 (2007); https://doi.org/10.1088/0957-4484/18/10/105104
H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S. Pyne and A. Misra, Colloids Surf. A Physicochem. Eng. Asp., 348, 212 (2009); https://doi.org/10.1016/j.colsurfa.2009.07.021
B. Graca, A. Zgrundo, D. Zakrzewska, M. Rzodkiewicz and J. Karczewski, Curr. Sci., 85, 162 (2003); https://doi.org/10.1016/j.chemosphere.2018.05.022
S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b
V.K. Sharma, R.A. Yngard and Y. Lin, Adv. Colloid Interface Sci., 145, 83 (2009); https://doi.org/10.1016/j.cis.2008.09.002
T.J. Jeetkar, S.P. Khataokar, A.R. Indurkar, A. Pandit and M.S. Nimbalkar, Adv. Nat. Sci. Nanosci. Nanotechnol., 13, 033004 (2022); https://doi.org/10.1088/2043-6262/ac865d
P. Kuppusamy, M.M. Yusoff, G.P. Maniam and N. Govindan, Saudi Pharm. J., 24, 473 (2016); https://doi.org/10.1016/j.jsps.2014.11.013
R.A. Banjara, A. Kumar, R.K. Aneshwari, M.L. Satnami and S.K. Sinha, Environ. Nanotechnol. Monit. Manag., 22, 100988 (2024); https://doi.org/10.1016/j.enmm.2024.100988
S. Panigrahi, S. Kundu, S. Ghosh, S. Nath and T. Pal, J. Nanopart. Res., 6, 411 (2004); https://doi.org/10.1007/s11051-004-6575-2
M. Mohammadi Dargah, P. Pedram, G. Cabrera-Barjas, C. Delattre, A. Nesic, G. Santagata, P. Cerruti and A. Moeini, Adv. Colloid Interface Sci., 332, 103277 (2024); https://doi.org/10.1016/j.cis.2024.103277
N. El Messaoudi, S. Boukhris, A. El Messaoudi, A. Kumar, M. Bilal, and L.F.R. Ferreira, in eds.: A. Kumar, M. Bilal and L.F.R. Ferreira, Green Synthesis of Nanoparticles for Remediation Organic Pollutants in Wastewater By Adsorption; In: Advances in Chemical Pollution, Environmental Management and Protection, Elsevier, vol. 10, Chap. 14, pp. 305–345 (2024).
M.K. Sah, B.S. Thakuri, J. Pant, R.L. Gardas and A. Bhattarai, Sustain. Chem., 5, 40 (2024); https://doi.org/10.3390/suschem5020004
M. Pourmadadi, R. Holghoomi, A. shamsabadipour, R. Maleki-baladi, A. Rahdar and S. Pandey, Plant Nano Biol., 8, 100070 (2024); https://doi.org/10.1016/j.plana.2024.100070
O.V. Mikhailov and E.O. Mikhailova, Materials, 12, 3177 (2019); https://doi.org/10.3390/ma12193177
A.K. Mittal, Y. Chisti and U.C. Banerjee, Biotechnol. Adv., 31, 346 (2013); https://doi.org/10.1016/j.biotechadv.2013.01.003
J. Kesharwani, K.Y. Yoon, J. Hwang and M. Rai, J. Bionanoscience, 3, 39 (2009); https://doi.org/10.1166/jbns.2009.1008
V. Khanna, S. Singh, K. Sudhakar, D.S. Baghel, B. Kumar, S. Wadhawa and N.K. Pandey, Rasayan J. Chem., 17, 957 (2024); https://doi.org/10.31788/RJC.2024.1738801
S.C. Mali, A. Dhaka, C.K. Githala and R. Trivedi, Biotechnol. Rep., 27, e00518 (2020); https://doi.org/10.1016/j.btre.2020.e00518
H.N. Jayasimha, K.G. Chandrappa, P.F. Sanaulla and V.G. Dileepkumar, Sens. Int., 5, 100254 (2024); https://doi.org/10.1016/j.sintl.2023.100254
A. Halfadji, M. Naous, S. Rajendrachari, Y. Ceylan, K.B. Ceylan and P.V.R. Shekar, J. Mol. Struct., 1301, 137318 (2024); https://doi.org/10.1016/j.molstruc.2023.137318
B. Kumar, K. Smita, L. Cumbal, A. Debut and Y. Angulo, J. Saudi Chem. Soc., 21, S475 (2017); https://doi.org/10.1016/j.jscs.2015.01.009
S. Wu, S. Rajeshkumar, M. Madasamy and V. Mahendran, Artif. Cells Nanomed. Biotechnol., 48, 1153 (2020); https://doi.org/10.1080/21691401.2020.1817053
H.R. Aher, S. Vikhe, A. Han and S.R. Kuchekar, Chem. Sci. Trans., 8, 1 (2019).
M.D. Moroda, T. Leta Deressa, A.H. Tiwikrama and T.F. Chala, Mater., 7, 100337 (2025); https://doi.org/10.1016/j.nxmate.2024.100337
A.N. Labaran, Z.U. Zango, G. Tailor, A. Alsadig, F. Usman, M.T. Mukhtar, A.M. Garba, R. Alhathlool, K.H. Ibnaouf and O.A. Aldaghri, Sci. Rep., 14, 5589 (2024); https://doi.org/10.1038/s41598-024-56052-y
M.K. Ghosh, S. Sahu, I. Gupta and T.K. Ghorai, RSC Advances, 10, 22027 (2020); https://doi.org/10.1039/D0RA03186K
S. Idrees, B.A. Abbasi, J. Iqbal and M. Kazi, Heliyon, 11, e41397 (2025); https://doi.org/10.1016/j.heliyon.2024.e41397
I. Chung, A. Abdul Rahuman, S. Marimuthu, A. Vishnu Kirthi, K. Anbarasan, P. Padmini and G. Rajakumar, Exp. Ther. Med., (2017); https://doi.org/10.3892/etm.2017.4466
B. Graca, A. Zgrundo, D. Zakrzewska, M. Rzodkiewicz and J. Karczewski, Chemtech, 9, 498 (2018); https://doi.org/10.1016/j.chemosphere.2018.05.022
N. Padma, S. Banu and S. Kumari, Annu. Res. Rev. Biol., 23, 1 (2018); https://doi.org/10.9734/ARRB/2018/38894
E.C. Okpara, O.E. Ogunjinmi, O.A. Oyewo, O.E. Fayemi and D.C. Onwudiwe, Heliyon, 7, e08571 (2021); https://doi.org/10.1016/j.heliyon.2021.e08571
M. Akl Awaad, ResearchGate, 7, 1 (2025); https://doi.org/10.5281/zenodo.4017993
M.J. Javid-Naderi, Z. Sabouri, A. Jalili, H. Zarrinfar, S. Samarghandian and M. Darroudi, Environ. Technol. Innov., 32, 103300 (2023); https://doi.org/10.1016/j.eti.2023.103300
S. Dhir, R. Dutt, R.P. Singh, M. Chauhan, T. Virmani, G. Kumar, A. Alhalmi, M.S. Aleissa, H.A. Rudayni and M. Al-Zahrani, Processes (Basel), 11, 2698 (2023); https://doi.org/10.3390/pr11092698
K. Bhardwaj, C. Chopra, P. Bhardwaj, D.S. Dhanjal, R. Singh, A. Najda, N. Cruz-Martins, S. Singh, R. Sharma, K. Kuča and S. Manickam, J. Nanotechnol., 2022, 2271278 (2022); https://doi.org/10.1155/2022/2271278
S. Sukumar, A. Rudrasenan and D. Padmanabhan Nambiar, ACS Omega, 5, 1040 (2020); https://doi.org/10.1021/acsomega.9b02857
M. Kumar, D. Kaushik, A. Kumar, P. Gupta, C. Proestos, E. Oz, E. Orhan, J. Kaur, M.R. Khan, T. Elobeid, M. Bordiga and F. Oz, Int. J. Food Sci. Technol., 58, 2883 (2023); https://doi.org/10.1111/ijfs.16359
F.M. Ibrahim, D.A. Najeeb and H. ThamerSadeq, Mater. Sci. Energy Technol., 6, 130 (2023); https://doi.org/10.1016/j.mset.2022.12.006
H. Majeed, K. Ahmad, S. Bibi, T. Iftikhar, M.M. Ibrahim, T. Ruby, G.A.M. Mersal, Z.M. El-Bahy, K. Qureshi, M. Arif, K. Naseem, S. Shaheen and H.N. Bhatti, Heliyon, 10, e30927 (2024); https://doi.org/10.1016/j.heliyon.2024.e30927
D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley and D.G. Fernig, Analyst (Lond.), 139, 4855 (2014); https://doi.org/10.1039/C4AN00978A
N. Kulkarni and U. Muddapur, J. Nanotechnol., 2014, 510246 (2014); https://doi.org/10.1155/2014/510246
J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta and S. Mukherji, Acta Biomater., 4, 707 (2008); https://doi.org/10.1016/j.actbio.2007.11.006
T. Kruk, K. Szczepanowicz, J. Stefańska, R.P. Socha and P. Warszyński, Colloids Surf. B Biointerfaces, 128, 17 (2015); https://doi.org/10.1016/j.colsurfb.2015.02.009
N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P.G. Zambonin and E. Traversa, Chem. Mater., 17, 5255 (2005); https://doi.org/10.1021/cm0505244
A. Jafari, L. Pourakbar, K. Farhadi, L. Mohamadgolizad and Y. Goosta,, Turk. J. Biol., 39, 556 (2015); https://doi.org/10.3906/biy-1406-81
M.X. Zhang, F. Verhoeven, P. Ravensbergen, S. Kooij, R. Geoffrion, D. Bonn and C.J.M. van Rijn, Pharmaceuticals, 16, 2 (2023); https://doi.org/10.3390/pharmaceutics16010002
R. Sankar, R. Maheswari, S. Karthik, K.S. Shivashangari and V. Ravikumar, Mater. Sci. Eng. C, 44, 234 (2014); https://doi.org/10.1016/j.msec.2014.08.030
M. Pourmadadi, R. Holghoomi, A. Shamsabadipour, R. Maleki-baladi, A. Rahdar and S. Pandey, Plant Nano Biol., 8, 100070 (2024); https://doi.org/10.1016/j.plana.2024.100070
M.J. Woźniak-Budych, K. Staszak and M. Staszak, Molecules, 28, 6687 (2023); https://doi.org/10.3390/molecules28186687
D. Xu, E. Li, B. Karmakar, N.S. Awwad, H.A. Ibrahium, H.-E.H. Osman, A.F. El-kott and M.M. Abdel-Daim, Arab. J. Chem., 15, 103638 (2022); https://doi.org/10.1016/j.arabjc.2021.103638
Z. Edis, S. Haj Bloukh, A. Ashames and M. Ibrahim, in eds.: P. Ramasami, M. Gupta Bhowon, S. Jhaumeer Laulloo, and H. Li Kam Wah, Copper-Based Nanoparticles, Their Chemistry and Antibacterial Properties: A Review. In: Chemistry for a Clean and Healthy Planet. ICPAC 2018. Springer, Cham (2019).
M. Maliki, I.H. Ifijen, E.U. Ikhuoria, E.M. Jonathan, G.E. Onaiwu, U.D. Archibong and A. Ighodaro, Int. Nano Lett., 12, 379 (2022); https://doi.org/10.1007/s40089-022-00380-2
P. Ghasemi, G. Shafiee, N. Ziamajidi and R. Abbasalipourkabir, Biol. Trace Elem. Res., 201, 3746 (2023); https://doi.org/10.1007/s12011-022-03458-2
P. Ponmurugan, K. Manjukarunambika, V. Elango and B.M. Gnanamangai, J. Exp. Nanosci., 11, 1019 (2016); https://doi.org/10.1080/17458080.2016.1184766
M. Selvarani, Int. J. Pharm. Pharmaceut. Sci., 10, 83 (2018).
P. Kanhed, S. Birla, S. Gaikwad, A. Gade, A.B. Seabra, O. Rubilar, N. Duran and M. Rai, Mater. Lett., 115, 13 (2014); https://doi.org/10.1016/j.matlet.2013.10.011
A.G. Krishna, S. Sahana, H. Venkatesan and V. Arul, J. Egypt. Natl. Canc. Inst., 36, 44 (2024); https://doi.org/10.1186/s43046-024-00254-y
Y. Wei, S. Chen, B. Kowalczyk, S. Huda, T.P. Gray and B.A. Grzybowski, J. Phys. Chem. C, 114, 15612 (2010); https://doi.org/10.1021/jp1055683
W. Huang, H. Fang, S. Zhang and H. Yu, Micro & Nano Lett., 16, 374 (2021); https://doi.org/10.1049/mna2.12060
N.-D. Pham, M.-M. Duong, M.-V. Le, H.A. Hoang and L.-K.-O. Pham, C. R. Chim., 22, 786 (2019); https://doi.org/10.1016/j.crci.2019.10.007
M. Zhou, M. Tian and C. Li, Bioconjugate Chem., 27, 1188 (2016); https://doi.org/10.1021/acs.bioconjchem.6b00156
F. Qi, Y. Chang, R. Zheng, X. Wu, Y. Wu, B. Li, T. Sun, P. Wang, H. Zhang and H. Zhang, ACS Biomater. Sci. Eng., 7, 2745 (2021); https://doi.org/10.1021/acsbiomaterials.1c00189
M.F. Al-Hakkani, SN Appl. Sci., 2, 505 (2020); https://doi.org/10.1007/s42452-020-2279-1
M.J. Woźniak-Budych, K. Staszak and M. Staszak, Molecules, 28, 6687 (2023); https://doi.org/10.3390/molecules28186687
M. Al-zharani, A.A. Qurtam, W.M. Daoush, M.H. Eisa, N.H. Aljarba, S. Alkahtani and F.A. Nasr, Environ. Sci. Pollut. Res., 28, 1587 (2021); https://doi.org/10. 1007/s11356-020-09843-5
M.C. Crisan, M. Teodora and M. Lucian, Appl. Sci., 12, 141 (2022); https://doi.org/10.3390/app12010141
A.R.M. Al-Qaissi, S.H. Fouzi and A.J. Al-Baytay, IOP Conf. Ser. Earth Environ. Sci., 1214, 012010 (2023); https://doi.org/10.1088/1755-1315/1214/1/012010
A. Martínez, C. Apip, M.F. Meléndrez, M. Domínguez, G. Sánchez-Sanhueza, T. Marzialetti and A. Catalán, J. Appl. Microbiol., 130, 1883 (2021); https://doi.org/10.1111/jam.14859
K.A. Mosa, M. El-Naggar, K. Ramamoorthy, H. Alawadhi, A. Elnaggar, S. Wartanian, E. Ibrahim and H. Hani, Front. Plant Sci., 9, 872 (2018); https://doi.org/10.3389/fpls.2018.00872
D. Devipriya and S.M. Roopan, Mater. Sci. Eng. C, 80, 38 (2017); https://doi.org/10.1016/j.msec.2017.05.130
S.E.-D. Hassan, S.S. Salem, A. Fouda, M.A. Awad, M.S. El-Gamal and A.M. Abdo, J. Radiat. Res. Appl. Sci., 11, 262 (2018); https://doi.org/10.1016/j.jrras.2018.05.003
S.Y. Ramy and F.A. Osama, Afr. J. Microbiol. Res., 7, 1917 (2013).
A.P. Ingle and M. Rai, IET Nanobiotechnol., 11, 546 (2017); https://doi.org/10.1049/iet-nbt.2016.0170
J.O. Ighalo, P.A. Sagboye, G. Umenweke, O.J. Ajala, F.O. Omoarukhe, C.A. Adeyanju, S. Ogunniyi and A.G. Adeniyi, Environ. Nanotechnol., Monit. Manag., 15, 100443 (2021); https://doi.org/10.1016/j.enmm.2021.100443
S. Bonthula, S.R. Bonthula, R. Pothu, R.K. Srivastava, R. Boddula, A.B. Radwan and N. Al-Qahtani, Sustain. Chem., 4, 246 (2023); https://doi.org/10.3390/suschem4030019
A. El Din Mahmoud, K.M. Al-Qahtani, S.O. Alflaij, S.F. Al-Qahtani and F.A. Alsamhan, Sci. Rep., 11, 12547 (2021); https://doi.org/10.1038/s41598-021-91093-7
L. Dorjee, R. Gogoi, D. Kamil, R. Kumar, T.K. Mondal, S. Pattanayak and B. Gurung, Front. Microbiol., 14, 1204512 (2023); https://doi.org/10.3389/fmicb.2023.1204512